|试卷下载
搜索
    上传资料 赚现金
    2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析01
    2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析02
    2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022年安徽省宣城市名校中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,魏晋时期的数学家刘徽首创割圆术,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是(  )

    A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
    2.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )

    A. B. C. D.
    3.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
    x

    –2
    –1
    0
    1
    2

    y

    0
    4
    6
    6
    4

    从上表可知,下列说法错误的是
    A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
    C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
    4.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
    A.180人 B.117人 C.215人 D.257人
    5.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是(  )

    A.0.5 B.1 C.3 D.π
    6.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是(  )

    A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c
    7.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )

    A.4 B.9 C.12 D.16
    8.若x是2的相反数,|y|=3,则的值是(  )
    A.﹣2 B.4 C.2或﹣4 D.﹣2或4
    9.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(  )

    A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
    10.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
    A.1 B.-6 C.2或-6 D.不同于以上答案
    11.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
    A. B.
    C. D.
    12.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________

    14.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
    15.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.

    16.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.
    17.如图,△ABC三边的中线AD,BE,CF的公共点G,若,则图中阴影部分面积是 .

    18.若a+b=3,ab=2,则a2+b2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
    (1)第一次购书的进价是多少元?
    (2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
    20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
    (1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
    (2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
    21.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.
    22.(8分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
    (1)如图1,当C,B两点均在直线MN的上方时,
    ①直接写出线段AE,BF与CE的数量关系.
    ②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
    (2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
    (3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.

    23.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.

    24.(10分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?
    25.(10分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
    求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
    26.(12分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

    27.(12分)计算:﹣22﹣+|1﹣4sin60°|



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    2、B
    【解析】
    将A、B、C、D分别展开,能和原图相对应的即为正确答案:
    【详解】
    A、展开得到,不能和原图相对应,故本选项错误;
    B、展开得到,能和原图相对,故本选项正确;
    C、展开得到,不能和原图相对应,故本选项错误;
    D、展开得到,不能和原图相对应,故本选项错误.
    故选B.
    3、C
    【解析】
    当x=-2时,y=0,
    ∴抛物线过(-2,0),
    ∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
    当x=0时,y=6,
    ∴抛物线与y轴的交点坐标为(0,6),故B正确;
    当x=0和x=1时,y=6,
    ∴对称轴为x=,故C错误;
    当x<时,y随x的增大而增大,
    ∴抛物线在对称轴左侧部分是上升的,故D正确;
    故选C.
    4、B
    【解析】
    设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
    【详解】
    设男生为x人,则女生有65%x人,由题意得,
    x+65%x=297,
    解之得
    x=180,
    297-180=117人.
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
    5、C
    【解析】
    连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
    【详解】
    连接OC、OD,

    ∵六边形ABCDEF是正六边形,
    ∴∠COD=60°,又OC=OD,
    ∴△COD是等边三角形,
    ∴OC=CD,
    正六边形的周长:圆的直径=6CD:2CD=3,
    故选:C.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
    6、D
    【解析】
    分析:根据图示,可得:c 详解: ∵c<0<a,|c|>|a|,
    ∴a+c<0,
    ∴选项A不符合题意;
    ∵c<b<0,
    ∴b+c<0,
    ∴选项B不符合题意;
    ∵c<b<0<a,c<0,
    ∴ac<0,bc>0,
    ∴ac<bc,
    ∴选项C不符合题意;
    ∵a>b,
    ∴a﹣c>b﹣c,
    ∴选项D符合题意.
    故选D.
    点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.
    7、B
    【解析】
    由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
    【详解】
    ∵ED∥BC,
    ∴△ABC∽△ADE,
    ∴ =,
    ∴ ==,
    即AE=9;
    ∴AE=9.
    故答案选B.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    8、D
    【解析】
    直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
    【详解】
    解:∵x是1的相反数,|y|=3,
    ∴x=-1,y=±3,
    ∴y-x=4或-1.
    故选D.
    【点睛】
    此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
    9、D
    【解析】
    ①首先利用已知条件根据边角边可以证明△APD≌△AEB;
    ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
    ③利用全等三角形的性质和对顶角相等即可判定③说法正确;
    ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
    ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
    【详解】
    由边角边定理易知△APD≌△AEB,故①正确;
    由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
    所以∠BEP=90°,
    过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
    在△AEP中,由勾股定理得PE=,
    在△BEP中,PB= ,PE=,由勾股定理得:BE=,
    ∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
    ∴∠AEP=45°,
    ∴∠BEF=180°-45°-90°=45°,
    ∴∠EBF=45°,
    ∴EF=BF,
    在△EFB中,由勾股定理得:EF=BF=,
    故②是错误的;
    因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
    由△APD≌△AEB,
    ∴PD=BE=,
    可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
    连接BD,则S△BPD=PD×BE= ,
    所以S△ABD=S△APD+S△APB+S△BPD=2+,
    所以S正方形ABCD=2S△ABD=4+ .
    综上可知,正确的有①③⑤.

    故选D.
    【点睛】
    考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
    10、C
    【解析】
    解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
    ②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
    故选C.
    点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
    11、C
    【解析】
    由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
    【详解】
    ∵关于x的一元二次方程x2−2x+k+2=0有实数根,
    ∴△=(−2)2−4(k+2)⩾0,
    解得:k⩽−1,
    在数轴上表示为:

    故选C.
    【点睛】
    本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
    12、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
    详解:设D(a,),
    ∵点D为矩形OABC的AB边的中点,
    ∴B(2a,),
    ∴E(2a,),
    ∵△BDE的面积为1,
    ∴•a•(-)=1,解得k=1.
    故答案为1.
    点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
    14、2.
    【解析】
    试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.
    考点:一元二次方程根的判别式.
    15、(0,).
    【解析】
    试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
    考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
    16、y=x+1
    【解析】
    已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.
    【详解】
    ∵直线 y=x 沿y轴向上平移1个单位长度,
    ∴所得直线的函数关系式为:y=x+1.
    ∴A(0,1),B(1,0),
    ∴AB=1,
    过点 O 作 OF⊥AB 于点 F,

    则AB•OF=OA•OB,
    ∴OF=,
    即这两条直线间的距离为.
    故答案为y=x+1,.
    【点睛】
    本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m.
    17、4
    【解析】
    试题分析:由中线性质,可得AG=2GD,则,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.
    考点:中线的性质.
    18、1
    【解析】
    根据a2+b2=(a+b)2-2ab,代入计算即可.
    【详解】
    ∵a+b=3,ab=2,
    ∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
    故答案为:1.
    【点睛】
    本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、赚了520元
    【解析】
    (1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
    (2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
    【详解】
    (1)设第一次购书的单价为x元,
    根据题意得:+10=,
    解得:x=5,
    经检验,x=5是原方程的解,
    答:第一次购书的进价是5元;
    (2)第一次购书为1200÷5=240(本),
    第二次购书为240+10=250(本),
    第一次赚钱为240×(7﹣5)=480(元),
    第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
    所以两次共赚钱480+40=520(元),
    答:该老板两次售书总体上是赚钱了,共赚了520元.
    【点睛】
    此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    20、(1)

    (2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
    【解析】
    试题分析:(1)列表如下:

    共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.
    ∴P(两数乘积是2的倍数)
    P(两数乘积是3的倍数)
    (2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
    考点:概率的计算
    点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。
    21、原式==﹣2.
    【解析】
    分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
    详解:原式=
    =
    =,
    当a=﹣1时,
    原式==﹣2.
    点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    22、(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=.
    【解析】
    (1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;
    ②利用①中结论即可解决问题;
    (2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解决问题;
    【详解】
    解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,

    ∵CE⊥MN,CD⊥BF,
    ∴∠CEA=∠D=90°,
    ∵CE⊥MN,CD⊥BF,BF⊥MN,
    ∴四边形CEFD为矩形,
    ∴∠ECD=90°,
    又∵∠ACB=90°,
    ∴∠ACB-∠ECB=∠ECD-∠ECB,
    即∠ACE=∠BCD,
    又∵△ABC为等腰直角三角形,
    ∴AC=BC,
    在△ACE和△BCD中,

    ∴△ACE≌△BCD(AAS),
    ∴AE=BD,CE=CD,
    又∵四边形CEFD为矩形,
    ∴四边形CEFD为正方形,
    ∴CE=EF=DF=CD,
    ∴AE+BF=DB+BF=DF=EC.
    ②由①可知:AF+BF=AE+EF+BF
    =BD+EF+BF
    =DF+EF
    =2CE,
    (2)AF-BF=2CE
    图2中,过点C作CG⊥BF,交BF延长线于点G,

    ∵AC=BC
    可得∠AEC=∠CGB,
    ∠ACE=∠BCG,
    在△CBG和△CAE中,

    ∴△CBG≌△CAE(AAS),
    ∴AE=BG,
    ∵AF=AE+EF,
    ∴AF=BG+CE=BF+FG+CE=2CE+BF,
    ∴AF-BF=2CE;
    (3)如图3,过点C做CD⊥BF,交FB的于点D,

    ∵AC=BC
    可得∠AEC=∠CDB,
    ∠ACE=∠BCD,
    在△CBD和△CAE中,

    ∴△CBD≌△CAE(AAS),
    ∴AE=BD,
    ∵AF=AE-EF,
    ∴AF=BD-CE=BF-FD-CE=BF-2CE,
    ∴BF-AF=2CE.
    ∵AF=3,BF=7,
    ∴CE=EF=2,AE=AF+EF=5,
    ∵FG∥EC,
    ∴,
    ∴,
    ∴FG=.
    【点睛】
    本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    23、∠CMA =35°.
    【解析】
    根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
    【详解】
    ∵AB∥CD,∴∠ACD+∠CAB=180°.
    又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
    又∵AB∥CD,∴∠CMA=∠BAM=35°.
    【点睛】
    本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
    24、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.
    【解析】
    分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;
    (2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.
    详解:(1)设进价为x元,则标价是1.5x元,由题意得:
    1.5x×0.9×8-8x=(1.5x-100)×7-7x,
    解得:x=1000,
    1.5×1000=1500(元),
    答:进价为1000元,标价为1500元;
    (2)设该型号自行车降价a元,利润为w元,由题意得:
    w=(51+×3)(1500-1000-a),
    =-(a-80)2+26460,
    ∵-<0,
    ∴当a=80时,w最大=26460,
    答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.
    点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.
    25、解:(1)该校班级个数为4÷20%=20(个),
    只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
    该校平均每班留守儿童的人数为:
    =4(名),
    补图如下:

    (2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,

    有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
    则所选两名留守儿童来自同一个班级的概率为:=.
    【解析】
    (1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
    (2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
    26、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
    【解析】
    (1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
    (2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
    【详解】
    解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
    当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
    将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
    解得:,则一次函数解析式为y=x+2;
    (2)由题意知BC=2,则△ACB的面积=×2×1=1.
    【点睛】
    本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
    27、-1
    【解析】
    直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
    【详解】
    解:原式=

    =﹣1.
    【点睛】
    此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.

    相关试卷

    安徽省宿州市名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份安徽省宿州市名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,当函数y=,如图,将一正方形纸片沿图等内容,欢迎下载使用。

    安徽省滁州市达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份安徽省滁州市达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了点A,下列命题是真命题的是,下列计算正确的是等内容,欢迎下载使用。

    2022年安徽省合肥市庐阳区重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年安徽省合肥市庐阳区重点达标名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,我们知道,下列事件中为必然事件的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map