年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届浙江地区中考数学全真模拟试题含解析

    2022届浙江地区中考数学全真模拟试题含解析第1页
    2022届浙江地区中考数学全真模拟试题含解析第2页
    2022届浙江地区中考数学全真模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江地区中考数学全真模拟试题含解析

    展开

    这是一份2022届浙江地区中考数学全真模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.若|a|=﹣a,则a为(  )
    A.a是负数 B.a是正数 C.a=0 D.负数或零
    2.函数的图象上有两点,,若,则( )
    A. B. C. D.、的大小不确定
    3.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
    A. B. C. D.
    4.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于(  )

    A.50° B.60° C.55° D.65°
    5.下列运算中,计算结果正确的是(  )
    A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a12÷a6=a2
    6.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
    A. B. C. D.
    7.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
    ①若C,O两点关于AB对称,则OA=;
    ②C,O两点距离的最大值为4;
    ③若AB平分CO,则AB⊥CO;
    ④斜边AB的中点D运动路径的长为π.
    其中正确的是(  )

    A.①② B.①②③ C.①③④ D.①②④
    8.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是(  )
    A. B. C. D.
    9.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为

    A.12米 B.4米 C.5米 D.6米
    10.已知一次函数且随的增大而增大,那么它的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    12.若分式方程的解为正数,则a的取值范围是______________.
    13.如果m,n互为相反数,那么|m+n﹣2016|=___________.
    14.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.
    15.一个圆锥的三视图如图,则此圆锥的表面积为______.

    16.分解因式:4ax2-ay2=________________.
    三、解答题(共8题,共72分)
    17.(8分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.

    (1)求证:PC是⊙O的切线;
    (2)若PC=3,PF=1,求AB的长.
    18.(8分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. 

    (1)求证:CD是⊙O的切线; 
    (2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
    19.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
    (1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
    (2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
    (3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

    20.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.

    请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为   度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
    21.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
    每人销售件数
    1800
    510
    250
    210
    150
    120
    人数
    1
    1
    3
    5
    3
    2
    (1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.
    22.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
    (1)求每千克A级别茶叶和B级别茶叶的销售利润;
    (2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
    23.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
    (1)求该抛物线的表达式和∠ACB的正切值;
    (2)如图2,若∠ACP=45°,求m的值;
    (3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.

    24.为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
    (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
    (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
    九宫格




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据绝对值的性质解答.
    【详解】
    解:当a≤0时,|a|=-a,
    ∴|a|=-a时,a为负数或零,
    故选D.
    【点睛】
    本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
    2、A
    【解析】
    根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.
    【详解】
    解:∵y=-1x1-8x+m,
    ∴此函数的对称轴为:x=-=-=-1,
    ∵x1<x1<-1,两点都在对称轴左侧,a<0,
    ∴对称轴左侧y随x的增大而增大,
    ∴y1<y1.
    故选A.
    【点睛】
    此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.
    3、D
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    解:6 590 000=6.59×1.
    故选:D.
    【点睛】
    本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
    4、B
    【解析】
    由圆周角定理即可解答.
    【详解】
    ∵△ABC是⊙O的内接三角形,
    ∴∠A= ∠BOC,
    而∠BOC=120°,
    ∴∠A=60°.
    故选B.
    【点睛】
    本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.
    5、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.
    【详解】
    A、a2•a3=a2+3=a5,故本选项错误;
    B、a2+a3不能进行运算,故本选项错误;
    C、(a2)3=a2×3=a6,故本选项正确;
    D、a12÷a6=a12﹣6=a6,故本选项错误.
    故选:C.
    【点睛】
    本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.
    6、D
    【解析】
    甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
    【详解】
    解:由于函数的图像经过点,则有

    ∴图象过第二、四象限,
    ∵k=-1,
    ∴一次函数y=x-1,
    ∴图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
    7、D
    【解析】
    分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
    ②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
    ③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
    ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
    详解:在Rt△ABC中,∵


    ①若C.O两点关于AB对称,如图1,
    ∴AB是OC的垂直平分线,

    所以①正确;
    ②如图1,取AB的中点为E,连接OE、CE,


    当OC经过点E时,OC最大,
    则C.O两点距离的最大值为4;
    所以②正确;
    ③如图2,当时,

    ∴四边形AOBC是矩形,
    ∴AB与OC互相平分,
    但AB与OC的夹角为不垂直,
    所以③不正确;
    ④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的

    则:
    所以④正确;
    综上所述,本题正确的有:①②④;
    故选D.
    点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
    8、C
    【解析】
    【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
    【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
    B、不是中心对称图形,是轴对称图形,故本选项错误;
    C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
    D、是中心对称图形,不是轴对称图形,故本选项错误,
    故选C.
    【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
    9、A
    【解析】
    试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
    ∴(米).故选A.
    【详解】
    请在此输入详解!
    10、B
    【解析】
    根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
    【详解】
    解:∵一次函数y=kx-3且y随x的增大而增大,
    ∴它的图象经过一、三、四象限,
    ∴不经过第二象限,
    故选:B.
    【点睛】
    本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    12、a<8,且a≠1
    【解析】
    分式方程去分母得:x=2x-8+a,
    解得:x=8- a,
    根据题意得:8- a>2,8- a≠1,
    解得:a<8,且a≠1.
    故答案为:a<8,且a≠1.
    【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.
    13、1.
    【解析】
    试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
    考点:1.绝对值的意义;2.相反数的性质.
    14、或
    【解析】
    设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.
    【详解】
    解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.

    ∵直线y=2x-1与x轴交点为C,与y轴交点为A,
    ∴点A(0,-1),点C(,0),
    ∴OA=1,OC=,AC==,
    ∴cos∠ACO==.
    ∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,
    ∴∠BAD=∠ACO.
    ∵AD=3,cos∠BAD==,
    ∴AB=3.
    ∵直线y=2x-b与y轴的交点为B(0,-b),
    ∴AB=|-b-(-1)|=3,
    解得:b=1-3或b=1+3.
    故答案为1+3或1-3.
    【点睛】
    本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.
    15、55cm2
    【解析】
    由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.
    【详解】
    由三视图可知,半径为5cm,圆锥母线长为6cm,
    ∴表面积=π×5×6+π×52=55πcm2,
    故答案为: 55πcm2.
    【点睛】
    本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.
    16、a(2x+y)(2x-y)
    【解析】
    首先提取公因式a,再利用平方差进行分解即可.
    【详解】
    原式=a(4x2-y2)
    =a(2x+y)(2x-y),
    故答案为a(2x+y)(2x-y).
    【点睛】
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
    (2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
    试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
    (2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.

    考点:切线的判定;切割线定理.
    18、(1)证明见解析;(2).
    【解析】
    试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
    而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
    根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
    试题解析:(1)连接OD.
    ∵OB=OD,
    ∴∠OBD=∠BDO.
    ∵∠CDA=∠CBD,
    ∴∠CDA=∠ODB.
    又∵AB是⊙O的直径,∴∠ADB=90°,
    ∴∠ADO+∠ODB=90°,
    ∴∠ADO+∠CDA=90°,即∠CDO=90°,
    ∴OD⊥CD.
    ∵OD是⊙O的半径,
    ∴CD是⊙O的切线;

    (2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,

    BC=6,∴CD=4.
    ∵CE,BE是⊙O的切线,
    ∴BE=DE,BE⊥BC,
    ∴BE2+BC2=EC2,
    即BE2+62=(4+BE)2,
    解得BE=.
    19、(1)作图见解析;(2)作图见解析;(3)P(,0).
    【解析】
    (1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
    【详解】
    解:(1)如图所示,△A1B1C1为所求做的三角形;
    (2)如图所示,△A2B2O为所求做的三角形;
    (3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
    ∴A2A3所在直线的解析式为:y=﹣5x+16,
    令y=0,则x=,
    ∴P点的坐标(,0).

    考点:平移变换;旋转变换;轴对称-最短路线问题.
    20、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
    【解析】
    分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
    (2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
    (3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
    详解:(1)56÷28%=200,
    即本次一共调查了200名购买者;
    (2)D方式支付的有:200×20%=40(人),
    A方式支付的有:200-56-44-40=60(人),
    补全的条形统计图如图所示,

    在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
    (3)1600×=928(名),
    答:使用A和B两种支付方式的购买者共有928名.
    点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    21、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件
    【解析】
    试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;
    (2)把月销售额320件与大部分员工的工资比较即可判断.
    (1)平均数件,
    ∵最中间的数据为210,
    ∴这组数据的中位数为210件,
    ∵210是这组数据中出现次数最多的数据,
    ∴众数为210件;
    (2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.
    考点:本题考查的是平均数、众数和中位数
    点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    22、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    【解析】
    试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
    试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
    由题意,
    解得,
    答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
    由题意w=100a+150(200﹣a)=﹣50a+30000,
    ∵﹣50<0,
    ∴w随x的增大而减小,
    ∴当a取最小值,w有最大值,
    ∵200﹣a≤2a,
    ∴a≥,
    ∴当a=67时,w最小=﹣50×67+30000=26650(元),
    此时200﹣67=133kg,
    答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
    23、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
    【解析】
    (1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
    (2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
    (3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
    【详解】
    解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
    解得:;
    ∴该抛物线的解析式为y=x2﹣3x+1,
    过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.

    ∵∠COA=∠G=90°,∠CAO=∠BAG,
    ∴△GAB∽△OAC.
    ∴=2.
    ∴BG=2AG,
    在Rt△ABG中,∵BG2+AG2=AB2,
    ∴(2AG)2+AG2=22,解得: AG=.
    ∴BG=,CG=AC+AG=2+=.
    在Rt△BCG中,tan∠ACB═.
    (2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.

    应用“全角夹半角”可得AK=OA+HK,
    设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
    在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
    ∴22+h2=(6﹣h)2.解得h=,
    ∴点K(1,),
    设直线CK的解析式为y=hx+1,
    将点K(1,)代入上式,得=1h+1.解得h=﹣,
    ∴直线CK的解析式为y=﹣x+1,
    设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
    将方程整理,得3x2﹣16x=0,
    解得x1=,x2=0(不合题意,舍去)
    将x1=代入y=﹣x+1,得y=,
    ∴点P的坐标为(,),
    ∴m=;
    (3)四边形ADMQ是平行四边形.理由如下:
    ∵CD∥x轴,
    ∴yC=yD=1,
    将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
    解得x1=0,x2=6,
    ∴点D(6,1),
    根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
    ∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
    ①当1<m<6时,DM=6﹣m,
    如图3,

    ∵△OAN∽△HAP,
    ∴,
    ∴=,
    ∴ON===m﹣1,
    ∵△ONQ∽△HMQ,
    ∴,
    ∴,
    ∴,
    ∴OQ=m﹣1,
    ∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
    ∴AQ=DM=6﹣m,
    又∵AQ∥DM,
    ∴四边形ADMQ是平行四边形.
    ②当m>6时,同理可得:四边形ADMQ是平行四边形.
    综上,四边形ADMQ是平行四边形.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
    24、(1);(2)
    【解析】
    试题分析:(1)利用概率公式直接计算即可;
    (2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
    试题解析:
    (1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
    (2)画树形图得:

    由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
    考点:列表法与树状图法;概率公式.

    相关试卷

    2023届山东省金乡县中考数学全真模拟试题含解析:

    这是一份2023届山东省金乡县中考数学全真模拟试题含解析,共18页。

    浙江地区2022年中考联考数学试卷含解析:

    这是一份浙江地区2022年中考联考数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年江西省宁都县中考数学全真模拟试题含解析:

    这是一份2022年江西省宁都县中考数学全真模拟试题含解析,共16页。试卷主要包含了答题时请按要求用笔,下列图案是轴对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map