年终活动
搜索
    上传资料 赚现金

    2022届天津市塘沽区一中学中考数学模拟精编试卷含解析

    2022届天津市塘沽区一中学中考数学模拟精编试卷含解析第1页
    2022届天津市塘沽区一中学中考数学模拟精编试卷含解析第2页
    2022届天津市塘沽区一中学中考数学模拟精编试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届天津市塘沽区一中学中考数学模拟精编试卷含解析

    展开

    这是一份2022届天津市塘沽区一中学中考数学模拟精编试卷含解析,共17页。试卷主要包含了-2的倒数是,如图,如图,点A所表示的数的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )
    A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
    B.当k>0时,y随x的增大而减小
    C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
    D.反比例函数的图象关于直线y=﹣x成轴对称
    2.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为(  )

    A.y= B.y= C.y= D.y=﹣
    3.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
    A. B. C. D.
    4.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(    )
    A.15                               B.12                               C.9                        D.6
    5.-2的倒数是( )
    A.-2 B. C. D.2
    6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    7.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(  )

    A.3 B.3.5 C.4 D.5
    8.下列各式中,不是多项式2x2﹣4x+2的因式的是(  )
    A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
    9.如图,点A所表示的数的绝对值是(  )

    A.3 B.﹣3 C. D.
    10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

    A. B.2 C. D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    12.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    13.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.

    14.分解因式:x2y﹣6xy+9y=_____.
    15.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.

    16.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.

    17.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.

    19.(5分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
    20.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
    (1)甲种商品与乙种商品的销售单价各多少元?
    (2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
    21.(10分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:

    成本
    (单位:万元/亩)
    销售额
    (单位:万元/亩)
    郁金香
    2.4
    3
    玫瑰
    2
    2.5
    (1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
    (2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
    22.(10分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.
    问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为   ;
    题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为   ;
    ②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;
    问题拓展:(3)在(1)(2)的条件下,若AP=,∠DEM=15°,则DM=   .

    23.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
    24.(14分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
    产品名称
    核桃
    花椒
    甘蓝
    每辆汽车运载量(吨)
    10
    6
    4
    每吨土特产利润(万元)
    0.7
    0.8
    0.5
    若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
    (1)求y与x之间的函数关系式;
    (2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    分析:根据反比例函数的性质一一判断即可;
    详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
    B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
    C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
    D.正确,本选项符合题意.
    故选D.
    点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
    2、C
    【解析】
    由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
    【详解】
    ∵S△AOC=4,
    ∴k=2S△AOC=8;
    ∴y=;
    故选C.
    【点睛】
    本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
    3、C
    【解析】
    根据向下平移,纵坐标相减,即可得到答案.
    【详解】
    ∵抛物线y=x2+2向下平移1个单位,
    ∴抛物线的解析式为y=x2+2-1,即y=x2+1.
    故选C.
    4、A
    【解析】
    根据三角函数的定义直接求解.
    【详解】
    在Rt△ABC中,∠C=90°,AC=9,
    ∵,
    ∴,
    解得AB=1.
    故选A
    5、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    6、D
    【解析】
    分a>0和a<0两种情况分类讨论即可确定正确的选项
    【详解】
    当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
    当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
    故选D.
    【点睛】
    本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
    7、A
    【解析】
    根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
    【详解】
    解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
    AP≥AB,
    AP≥3.5,
    故选:A.
    【点睛】
    本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
    8、D
    【解析】
    原式分解因式,判断即可.
    【详解】
    原式=2(x2﹣2x+1)=2(x﹣1)2。
    故选:D.
    【点睛】
    考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    9、A
    【解析】
    根据负数的绝对值是其相反数解答即可.
    【详解】
    |-3|=3,
    故选A.
    【点睛】
    此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
    10、C
    【解析】
    通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
    【详解】
    过点D作DE⊥BC于点E
    .
    由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
    ∴AD=a.
    ∴DE•AD=a.
    ∴DE=1.
    当点F从D到B时,用s.
    ∴BD=.
    Rt△DBE中,
    BE=,
    ∵四边形ABCD是菱形,
    ∴EC=a-1,DC=a,
    Rt△DEC中,
    a1=11+(a-1)1.
    解得a=.
    故选C.
    【点睛】
    本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    12、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.
    13、6.4
    【解析】
    根据平行投影,同一时刻物长与影长的比值固定即可解题.
    【详解】
    解:由题可知:,
    解得:树高=6.4米.
    【点睛】
    本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
    14、y(x﹣3)2
    【解析】
    本题考查因式分解.
    解答:.
    15、x>1
    【解析】
    分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
    详解:
    ∵kx+b>0,
    ∴一次函数的图像在x 轴上方时,
    ∴x的取值范围为:x>1.
    故答案为x>1.
    点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.
    16、
    【解析】
    根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
    【详解】
    解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
    ∴tan∠AED=tanB=.
    故答案为:.
    【点睛】
    本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
    17、3.
    【解析】
    试题解析:把(-1,0)代入得:
    2-3+k-2=0,
    解得:k=3.
    故答案为3.

    三、解答题(共7小题,满分69分)
    18、证明见解析
    【解析】
    分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
    详解:证明:在▱ABCD中,,
    ,又 ,≌,
    ,,又,
    四边形AGCH为平行四边形, .
    点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
    19、(1);(2)
    【解析】
    (1)根据可能性只有男孩或女孩,直接得到其概率;
    (2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
    【详解】
    解:(1)(1)第二个孩子是女孩的概率=;
    故答案为;
    (2)画树状图为:

    共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
    所以至少有一个孩子是女孩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    20、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
    【解析】
    (1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
    (1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
    【详解】
    (1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
    ,解得.
    答:甲种商品的销售单价900元,乙种商品的销售单价600元;
    (1)设销售甲种商品a万件,依题意有:
    900a+600(8﹣a)≥5400,解得:a≥1.
    答:至少销售甲种商品1万件.
    【点睛】
    本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
    21、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
    【解析】
    (1)根据题意和表格中的数据可得到y关于x的函数;
    (2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
    【详解】
    (1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
    即y关于x的函数关系式为y=0.1x+15
    (2)由题意得2.4x+2(30-x)≤70
    解得x≤25,
    ∵y=0.1x+15
    ∴当x=25时,y最大=17.5
    30-x=5,
    ∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
    【点睛】
    此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.
    22、 (1) DM=AD+AP ;(2) ①DM=AD﹣AP ; ②DM=AP﹣AD ;(3) 3﹣或﹣1.
    【解析】
    (1)根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    (2)①根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    ②根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    (3)分两种情况利用勾股定理和三角函数解答即可.
    【详解】
    (1)DM=AD+AP,理由如下:
    ∵正方形ABCD,
    ∴DC=AB,∠DAP=90°,
    ∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
    ∴DP=PE,∠PNE=90°,∠DPE=90°,
    ∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
    ∴∠DAP=∠EPN,
    在△ADP与△NPE中,

    ∴△ADP≌△NPE(AAS),
    ∴AD=PN,AP=EN,
    ∴AN=DM=AP+PN=AD+AP;
    (2)①DM=AD﹣AP,理由如下:
    ∵正方形ABCD,
    ∴DC=AB,∠DAP=90°,
    ∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
    ∴DP=PE,∠PNE=90°,∠DPE=90°,
    ∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
    ∴∠DAP=∠EPN,
    在△ADP与△NPE中,

    ∴△ADP≌△NPE(AAS),
    ∴AD=PN,AP=EN,
    ∴AN=DM=PN﹣AP=AD﹣AP;
    ②DM=AP﹣AD,理由如下:
    ∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,
    ∴∠DAP=∠PEN,
    又∵∠A=∠PNE=90°,DP=PE,
    ∴△DAP≌△PEN,
    ∴AD=PN,
    ∴DM=AN=AP﹣PN=AP﹣AD;
    (3)有两种情况,如图2,DM=3﹣,如图3,DM=﹣1;
    ①如图2:∵∠DEM=15°,
    ∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
    在Rt△PAD中AP=,AD==3,
    ∴DM=AD﹣AP=3﹣;
    ②如图3:∵∠DEM=15°,
    ∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
    在Rt△PAD中AP=,AD=AP•tan30°==1,
    ∴DM=AP﹣AD=﹣1.
    故答案为;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△ADP≌△PFN是解本题的关键.
    23、(1);(2);(3)最多获利4480元.
    【解析】
    (1)销售量y为200件加增加的件数(80﹣x)×20;
    (2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;
    (3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.
    【详解】
    (1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
    所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);
    (2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
    所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:
    W=﹣20x2+3000x﹣108000;
    (3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,
    w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,
    ∵a=﹣20<0,
    ∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,
    ∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).
    所以商场销售该品牌童装获得的最大利润是4480元.
    【点睛】
    二次函数的应用.
    24、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【解析】
    (1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
    (1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
    【详解】
    (1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
    根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
    (1)根据题意得:,
    解得:7≤x≤,
    ∵x为整数,
    ∴7≤x≤2.
    ∵10.6>0,
    ∴y随x增大而减小,
    ∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
    答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.

    相关试卷

    初中数学中考复习 天津市塘沽区大沽中学2019年中考数学模拟(4月)试卷(含解析):

    这是一份初中数学中考复习 天津市塘沽区大沽中学2019年中考数学模拟(4月)试卷(含解析),共20页。试卷主要包含了3tan60°的值为,下列图形是中心对称图形的是,三个实数3、、的大小关系是,化简+的结果是,在方程组中,代入消元可得,已知点A等内容,欢迎下载使用。

    东王营中学2022年中考数学模拟精编试卷含解析:

    这是一份东王营中学2022年中考数学模拟精编试卷含解析,共18页。试卷主要包含了的算术平方根是等内容,欢迎下载使用。

    2022年兴安市重点中学中考数学模拟精编试卷含解析:

    这是一份2022年兴安市重点中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列等式正确的是,关于的方程有实数根,则满足等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map