终身会员
搜索
    上传资料 赚现金

    2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析

    立即下载
    加入资料篮
    2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析第1页
    2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析第2页
    2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2022届辽宁省沈阳市于洪区重点达标名校毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )
    A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
    B.当k>0时,y随x的增大而减小
    C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
    D.反比例函数的图象关于直线y=﹣x成轴对称
    2.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )

    A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
    C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
    3.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

    下面有三个推断:
    ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
    ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
    ③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
    其中合理的是(  )
    A.① B.② C.①② D.①③
    4.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是(  )
    月用电量(度)
    25
    30
    40
    50
    60
    户数
    1
    2
    4
    2
    1
    A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
    5.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为(  )

    A.34° B.56° C.66° D.54°
    7.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    8.在-,,0,-2这四个数中,最小的数是( )
    A. B. C.0 D.-2
    9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是(  )
    A.x(x+1)=210 B.x(x﹣1)=210
    C.2x(x﹣1)=210 D.x(x﹣1)=210
    10.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )

    A.12 B.48 C.72 D.96
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.

    12.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.

    13.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为______.
    14.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.

    15.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)

    16.已知一个多边形的每一个内角都是,则这个多边形是_________边形.
    17.如图,在矩形ABCD中,E是AD边的中点,,垂足为点F,连接DF,分析下列四个结论:∽;;;其中正确的结论有______.

    三、解答题(共7小题,满分69分)
    18.(10分)当=,b=2时,求代数式的值.
    19.(5分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
    20.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
    (1)选中的男主持人为甲班的频率是
    (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
    21.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.

    22.(10分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    23.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:

    (I)本次随机抽样调查的学生人数为   ,图①中的m的值为   ;
    (II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
    (III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
    24.(14分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.

    (1)求证:BD是⊙O的切线;
    (2)若AE=9, CE=12, 求BF的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    分析:根据反比例函数的性质一一判断即可;
    详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
    B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
    C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
    D.正确,本选项符合题意.
    故选D.
    点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
    2、D
    【解析】
    试题解析:A、∵4+10+8+6+2=30(人),
    ∴参加本次植树活动共有30人,结论A正确;
    B、∵10>8>6>4>2,
    ∴每人植树量的众数是4棵,结论B正确;
    C、∵共有30个数,第15、16个数为5,
    ∴每人植树量的中位数是5棵,结论C正确;
    D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
    ∴每人植树量的平均数约是4.73棵,结论D不正确.
    故选D.
    考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
    3、B
    【解析】
    ①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
    故选B.
    【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
    4、C
    【解析】
    极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
    【详解】
    解:A、这组数据的极差是:60-25=35,故本选项错误;
    B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
    C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
    D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
    故选:C.
    【点睛】
    本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
    5、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    6、B
    【解析】
    试题分析:∵AB∥CD,
    ∴∠D=∠1=34°,
    ∵DE⊥CE,
    ∴∠DEC=90°,
    ∴∠DCE=180°﹣90°﹣34°=56°.
    故选B.
    考点:平行线的性质.
    7、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    8、D
    【解析】
    根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
    【详解】
    在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
    故最小的数为:﹣1.
    故选D.
    【点睛】
    本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
    9、B
    【解析】
    设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
    则总共送出的图书为x(x−1);
    又知实际互赠了210本图书,
    则x(x−1)=210.
    故选:B.
    10、C
    【解析】
    解:根据图形,
    身高在169.5cm~174.5cm之间的人数的百分比为:,
    ∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、16,3n+1.
    【解析】
    观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.
    【详解】
    由图可得,第1个图案基础图形的个数为4,
    第2个图案基础图形的个数为7,7=4+3,
    第3个图案基础图形的个数为10,10=4+3×2,
    …,
    第5个图案基础图形的个数为4+3(5−1)=16,
    第n个图案基础图形的个数为4+3(n−1)=3n+1.
    故答案为16,3n+1.
    【点睛】
    本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.
    12、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=3,
    ∴BD=2OB=6,
    ∴AD=.
    【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    13、
    【解析】
    首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.
    【详解】
    在y=kx+3中令x=0,得y=3,
    则函数与y轴的交点坐标是:(0,3);
    设函数与x轴的交点坐标是(a,0),
    根据勾股定理得到a2+32=25,
    解得a=±4;
    当a=4时,把(4,0)代入y=kx+3,得k=;
    当a=-4时,把(-4,0)代入y=kx+3,得k=;
    故k的值为或
    【点睛】
    考点:本体考查的是根据待定系数法求一次函数解析式
    解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.
    14、1.5或3
    【解析】
    根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:
    如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;

    如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.

    故答案为1.5或3.
    点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.
    15、①②
    【解析】
    根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
    【详解】
    如图1,连接OA和OB,作OF⊥AB.
    由题知: 沿着弦AB折叠,正好经过圆心O
    ∴OF=OA= OB
    ∴∠AOF=∠BOF=60°
    ∴∠AOB=120°
    ∴∠ACB=120°(同弧所对圆周角相等)
    ∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
    ∴∠ACD=180°-∠ACB=60°
    ∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
    故,①②正确

       下面研究问题EO的最小值是否是1
     
    如图2,连接AE和EF
    ∵△ACD是等边三角形,E是CD中点
    ∴AE⊥BD(三线合一)
    又∵OF⊥AB
    ∴F是AB中点
    即,EF是△ABE斜边中线
    ∴AF=EF=BF
    即,E点在以AB为直径的圆上运动.
    所以,如图3,当E、O、F在同一直线时,OE长度最小
    此时,AE=EF,AE⊥EF
    ∵⊙O的半径是2,即OA=2,OF=1
    ∴AF= (勾股定理)
    ∴OE=EF-OF=AF-OF=-1
    所以,③不正确
    综上所述:①②正确,③不正确.
    故答案是:①②.
    【点睛】
    考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
    16、十
    【解析】
    先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
    【详解】
    解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.
    故答案为十.
    【点睛】
    本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
    17、
    【解析】
    ①证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
    ②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;
    ③作DM∥EB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;
    ④设AE=a,AB=b,则AD=2a,根据△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.
    【详解】
    如图,过D作DM∥BE交AC于N,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,∠ABC=90°,AD=BC,
    ∵BE⊥AC于点F,
    ∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
    ∴△AEF∽△CAB,故①正确;
    ∵AD∥BC,
    ∴△AEF∽△CBF,
    ∴,
    ∵AE=AD=BC,
    ∴,即CF=2AF,
    ∴CF=2AF,故②正确;
    作DM∥EB交BC于M,交AC于N,

    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,
    ∴BM=DE=BC,
    ∴BM=CM,
    ∴CN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥CF,
    ∴DM垂直平分CF,
    ∴DF=DC,故③正确;
    设AE=a,AB=b,则AD=2a,
    由△BAE∽△ADC,
    ∴,即b=a,
    ∴tan∠CAD=,故④错误;
    故答案为:①②③.
    【点睛】
    本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.

    三、解答题(共7小题,满分69分)
    18、,6﹣3.
    【解析】
    原式=
    =,
    当a=,b=2时,
    原式.
    19、112.1
    【解析】
    试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;
    (2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.
    试题解析:解:(1)y=30﹣2x(6≤x<11).
    (2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.
    点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    20、 (1) (2) ,图形见解析.
    【解析】
    (1)根据概率的定义即可求出;
    (2)先根据题意列出树状图,再利用概率公式进行求解.
    【详解】
    (1)由题意P(选中的男主持人为甲班)=
    (2)列出树状图如下
    ∴P(选中的男女主持人均为甲班的)=

    【点睛】
    此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
    21、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
    22、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    23、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
    【解析】
    (I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
    (II)根据众数、中位数和平均数的定义计算可得;
    (III)用总人数乘以样本中5天、6天的百分比之和可得.
    【详解】
    解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
    故答案为150、14;
    (II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
    平均数为=3.5天;
    (III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
    【点睛】
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
    24、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
    (2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
    试题解析:(1)证明:∵,
    ∴.
    ∵CD平分,BC=BD,
    ∴,.
    ∴.
    ∴∥.
    ∴.
    ∵AB是⊙O的直径,
    ∴BD是⊙O的切线.
    (2)连接AC,
    ∵AB是⊙O直径,
    ∴.
    ∵,
    可得.

    在Rt△CEB中,∠CEB=90°,由勾股定理得

    ∴.
    ∵,∠EFC =∠BFD,
    ∴△EFC∽△BFD.
    ∴.
    ∴.
    ∴BF=1.

    考点:切线的判定,相似三角形,勾股定理

    相关试卷

    云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。

    宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年辽宁省抚顺市新抚区重点达标名校毕业升学考试模拟卷数学卷含解析:

    这是一份2022年辽宁省抚顺市新抚区重点达标名校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了下列各式计算正确的是,函数y=的自变量x的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map