终身会员
搜索
    上传资料 赚现金

    2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析

    立即下载
    加入资料篮
    2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析第1页
    2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析第2页
    2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析

    展开

    这是一份2022届湖北省孝感市孝南区八校(长湖中学中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,当函数y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.抛物线y=x2+2x+3的对称轴是( )
    A.直线x=1 B.直线x=-1
    C.直线x=-2 D.直线x=2
    2.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为(  )

    A.8064 B.8067 C.8068 D.8072
    3.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是(  )

    A.∠ADC B.∠ABD C.∠BAC D.∠BAD
    4.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
    A.2,1,0.4 B.2,2,0.4
    C.3,1,2 D.2,1,0.2
    5.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是(  )
    A. B. C. D.x为任意实数
    6.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )
    A. B.
    C. D.
    7.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
    A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
    8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是(  )

    A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
    9.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为(  )
    A.0.88×105 B.8.8×104 C.8.8×105 D.8.8×106
    10.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是(  )

    A.2011年我国的核电发电量占总发电量的比值约为1.5%
    B.2006年我国的总发电量约为25000亿千瓦时
    C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
    D.我国的核电发电量从2008年开始突破1000亿千瓦时
    11.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )

    A.π B.π C.π D.π
    12.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是(  )

    A.20,20 B.30,20 C.30,30 D.20,30
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.函数y=+中,自变量x的取值范围是_____.
    14.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
    15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
    16.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角
    形所构成的图形的面积为__________.

    17.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)

    18.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)先化简,再求值:(﹣1)÷,其中x=1.
    20.(6分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
    (1)求y与x的函数关系式;
    (2)直接写出自变量x的取值范围.

    21.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.

    22.(8分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
    (特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=   ;
    ②若∠BAC=90°(如图3),BC=6,AD=   ;
    (猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
    (拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.

    23.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    24.(10分)已知BD平分∠ABF,且交AE于点D.
    (1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
    (2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.

    25.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.

    26.(12分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.

    27.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据抛物线的对称轴公式:计算即可.
    【详解】
    解:抛物线y=x2+2x+3的对称轴是直线
    故选B.
    【点睛】
    此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
    2、C
    【解析】
    分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.
    详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.
    如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.
    故选C.
    点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.
    3、D
    【解析】
    ∵∠ACD对的弧是,对的另一个圆周角是∠ABD,
    ∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),
    又∵AB为直径,
    ∴∠ADB=90°,
    ∴∠ABD+∠BAD=90°,
    即∠ACD+∠BAD=90°,
    ∴与∠ACD互余的角是∠BAD.
    故选D.
    4、B
    【解析】
    试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
    故选B.
    5、B
    【解析】
    分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.
    详解:对称轴是:x=1,且开口向上,如图所示,
    ∴当x<1时,函数值y随着x的增大而减小;
    故选B.

    点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.
    6、A
    【解析】
    根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.
    【详解】
    设有x辆车,则可列方程:
    3(x-2)=2x+1.
    故选:A.
    【点睛】
    此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.
    7、B
    【解析】
    .
    故选B.
    点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
    8、C
    【解析】
    首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
    【详解】
    解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
    ∴a+b>0,c﹣b<0
    ∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
    故答案为a+c.
    故选A.
    9、B
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,
    ∵88000一共5位,∴88000=8.88×104. 故选B.
    考点:科学记数法.
    10、B
    【解析】
    由折线统计图和条形统计图对各选项逐一判断即可得.
    【详解】
    解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
    B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
    C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
    D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
    故选:B.
    【点睛】
    本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
    11、D
    【解析】
    点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.
    【详解】
    如图,点F的运动路径的长为弧FF'的长,

    在Rt△ABC中,∵tan∠BAC=,
    ∴∠BAC=30°,
    ∵∠CAF=∠BAC=30°,
    ∴∠BAF=60°,
    ∴∠FAF′=120°,
    ∴弧FF'的长=.
    故选D.
    【点睛】
    本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.
    12、C
    【解析】
    根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.
    【详解】
    捐款30元的人数为20人,最多,则众数为30,
    中间两个数分别为30和30,则中位数是30,
    故选C.
    【点睛】
    本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    14、
    【解析】
    分析:
    根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
    详解:
    设他推车步行的时间为x分钟,根据题意可得:
    80x+250(15-x)=2900.
    故答案为80x+250(15-x)=2900.
    点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
    15、20
    【解析】
    利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.
    【详解】
    设原来红球个数为x个,
    则有=,
    解得,x=20,
    经检验x=20是原方程的根.
    故答案为20.
    【点睛】
    本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.
    16、12.2
    【解析】
    ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==11-1;
    AC==,AD==1,∴S△ACD==1=11-1
    ∴第n个等腰直角三角形的面积是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,
    由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2.故答案为12.2.
    17、15π−18.
    【解析】
    根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
    【详解】
    S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
    ∵S扇形ACE==12π,
    S扇形BCD==3π,
    S△ABC=×6×6=18,
    ∴S阴影部分=12π+3π−18=15π−18.
    故答案为15π−18.
    【点睛】
    本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
    18、61
    【解析】
    分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
    详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
    如图②:AM2=AC2+CM2=92+4=85;
    如图:AM2=52+(4+2)2=61.

    ∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
    故答案为:61.
    点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、-1.
    【解析】
    先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.
    【详解】
    解:原式=,
    =,
    =,
    =﹣,
    当x=1时,
    原式=﹣=﹣1.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
    20、(1)y=-2x+31,(2)20≤x≤1
    【解析】
    试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
    (2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
    试题解析:
    (1)设y与x的函数关系式为y=kx+b,根据题意,得:

    解得:
    ∴y与x的函数解析式为y=-2x+31,
    (2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
    ∴自变量x的取值范围是20≤x≤1.
    21、(1)k=10,b=3;(2).
    【解析】
    试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.
    试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10
    把x=2,y=5代入y=x+b,得b=3
    (2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=×3×5=7.5
    考点:一次函数与反比例函数的综合问题.
    22、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
    【解析】
    (1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
    ②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
    【详解】
    (1)①∵△ABC是等边三角形,BC=1,
    ∴AB=AC=1,∠BAC=60,
    ∴AB′=AC′=1,∠B′AC′=120°.
    ∵AD为等腰△AB′C′的中线,
    ∴AD⊥B′C′,∠C′=30°,
    ∴∠ADC′=90°.
    在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
    ∴AD=AC′=2.
    ②∵∠BAC=90°,
    ∴∠B′AC′=90°.
    在△ABC和△AB′C′中,,
    ∴△ABC≌△AB′C′(SAS),
    ∴B′C′=BC=6,
    ∴AD=B′C′=3.
    故答案为:①2;②3.
    (2)AD=BC.
    证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
    ∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
    ∴∠BAC=∠AB′E.
    在△BAC和△AB′E中,,
    ∴△BAC≌△AB′E(SAS),
    ∴BC=AE.
    ∵AD=AE,
    ∴AD=BC.
    (3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
    ∵PB=PC,PF⊥BC,
    ∴PF为△PBC的中位线,
    ∴PF=AD=3.
    在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
    ∴BF==1,
    ∴BC=2BF=4.

    【点睛】
    本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
    23、电视塔高为米,点的铅直高度为(米).
    【解析】
    过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
    【详解】
    过点P作PF⊥OC,垂足为F.
    在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
    过点P作PB⊥OA,垂足为B.
    由i=1:2,设PB=x,则AB=2x.
    ∴PF=OB=100+2x,CF=100﹣x.
    在Rt△PCF中,由∠CPF=45°,
    ∴PF=CF,即100+2x=100﹣x,
    ∴x= ,即PB=米.

    【点睛】
    本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
    24、 (1)见解析:(2)见解析.
    【解析】
    试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
    (2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
    试题解析:(1)如图所示:

    (2)如图:

    在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
    考点:1.菱形的判定;2.作图—基本作图.
    25、(1)15人;(2)补图见解析.(3).
    【解析】
    (1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
    (2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
    (3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
    【详解】
    解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
    (2)A2的人数为15﹣2﹣6﹣4=3(人)
    补全图形,如图所示,
    A1所在圆心角度数为:×360°=48°;

    (3)画出树状图如下:

    共6种等可能结果,符合题意的有3种
    ∴选出一名男生一名女生的概率为:P=.
    【点睛】
    本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
    26、.
    【解析】
    试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
    试题解析:解:画树状图如答图:

    ∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
    ∴P(A,C两个区域所涂颜色不相同)=.
    考点:1.画树状图或列表法;2.概率.
    27、(1)2400个, 10天;(2)1人.
    【解析】
    (1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
    【详解】
    解:(1)解:设原计划每天生产零件x个,由题意得,

    解得x=2400,
    经检验,x=2400是原方程的根,且符合题意.
    ∴规定的天数为24000÷2400=10(天).
    答:原计划每天生产零件2400个,规定的天数是10天.
    (2)设原计划安排的工人人数为y人,由题意得,
    [5×20×(1+20%)×+2400] ×(10-2)=24000,
    解得,y=1.
    经检验,y=1是原方程的根,且符合题意.
    答:原计划安排的工人人数为1人.
    【点睛】
    本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.

    相关试卷

    2023年湖北省孝感市孝南区中考数学三模试卷(含解析):

    这是一份2023年湖北省孝感市孝南区中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年湖北省孝感市孝南区十校联谊重点中学中考适应性考试数学试题含解析:

    这是一份2022年湖北省孝感市孝南区十校联谊重点中学中考适应性考试数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届湖北省孝感市孝南区等五校中考数学仿真试卷含解析:

    这是一份2022届湖北省孝感市孝南区等五校中考数学仿真试卷含解析,共22页。试卷主要包含了下列说法正确的是,下列计算,结果等于a4的是,下列各数中负数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map