终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖北省安陆市五校中考数学全真模拟试题含解析

    立即下载
    加入资料篮
    2022届湖北省安陆市五校中考数学全真模拟试题含解析第1页
    2022届湖北省安陆市五校中考数学全真模拟试题含解析第2页
    2022届湖北省安陆市五校中考数学全真模拟试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省安陆市五校中考数学全真模拟试题含解析

    展开

    这是一份2022届湖北省安陆市五校中考数学全真模拟试题含解析,共20页。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    2.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m<3 B.m>3 C.m≤3 D.m≥3
    3.下列生态环保标志中,是中心对称图形的是(  )
    A. B. C. D.
    4.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    5.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )

    A.两车同时到达乙地
    B.轿车在行驶过程中进行了提速
    C.货车出发3小时后,轿车追上货车
    D.两车在前80千米的速度相等
    6.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是(   )

    A. B.12 C.14 D.21
    7.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    8.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
    A. B.
    C. D.
    9.矩形具有而平行四边形不具有的性质是(  )
    A.对角相等 B.对角线互相平分
    C.对角线相等 D.对边相等
    10.下列现象,能说明“线动成面”的是(  )
    A.天空划过一道流星
    B.汽车雨刷在挡风玻璃上刷出的痕迹
    C.抛出一块小石子,石子在空中飞行的路线
    D.旋转一扇门,门在空中运动的痕迹
    二、填空题(共7小题,每小题3分,满分21分)
    11.函数y=中自变量x的取值范围是________,若x=4,则函数值y=________.
    12.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
    13.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
    14.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
    15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.

    16.在数轴上,点A和点B分别表示数a和b,且在原点的两侧,若=2016,AO=2BO,则a+b=_____
    17.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.

    三、解答题(共7小题,满分69分)
    18.(10分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:
    (1)这两种书的单价.
    (2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?
    19.(5分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    20.(8分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    21.(10分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
    根据所给信息,解答以下问题:
    (1)在扇形统计图中,C对应的扇形的圆心角是   度;
    (2)补全条形统计图;
    (3)所抽取学生的足球运球测试成绩的中位数会落在   等级;
    (4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?

    22.(10分)问题探究
    (1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为   ;
    (2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
    问题解决
    (3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.

    23.(12分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
    (1)求m,n的值;
    (2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.

    24.(14分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    2、A
    【解析】
    分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
    详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m>0,
    ∴m<3,
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    3、B
    【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    【考点】中心对称图形.
    4、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    5、B
    【解析】
    ①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
    【详解】
    由题意和图可得,
    轿车先到达乙地,故选项A错误,
    轿车在行驶过程中进行了提速,故选项B正确,
    货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
    设货车对应的函数解析式为y=kx,
    5k=300,得k=60,
    即货车对应的函数解析式为y=60x,
    设CD段轿车对应的函数解析式为y=ax+b,
    ,得,
    即CD段轿车对应的函数解析式为y=110x-195,
    令60x=110x-195,得x=3.9,
    即货车出发3.9小时后,轿车追上货车,故选项C错误,
    故选:B.
    【点睛】
    此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
    6、A
    【解析】
    根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.
    【详解】
    解:过点A作AD⊥BC,

    ∵△ABC中,cosB=,sinC=,AC=5,
    ∴cosB==,
    ∴∠B=45°,
    ∵sinC===,
    ∴AD=3,
    ∴CD==4,
    ∴BD=3,
    则△ABC的面积是:×AD×BC=×3×(3+4)=.
    故选:A.
    【点睛】
    此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
    7、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    8、C
    【解析】
    由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
    【详解】
    ∵关于x的一元二次方程x2−2x+k+2=0有实数根,
    ∴△=(−2)2−4(k+2)⩾0,
    解得:k⩽−1,
    在数轴上表示为:

    故选C.
    【点睛】
    本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
    9、C
    【解析】
    试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
    解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
    平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
    ∴矩形具有而平行四边形不一定具有的性质是对角线相等,
    故选C.
    10、B
    【解析】
    本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
    【详解】
    解:∵A、天空划过一道流星说明“点动成线”,
    ∴故本选项错误.
    ∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
    ∴故本选项正确.
    ∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
    ∴故本选项错误.
    ∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
    ∴故本选项错误.
    故选B.
    【点睛】
    本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x≥3 y=1
    【解析】
    根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y=1.
    12、6y2-5y+2=0
    【解析】
    根据y=,将方程变形即可.
    【详解】
    根据题意得:3y+,
    得到6y2-5y+2=0
    故答案为6y2-5y+2=0
    【点睛】
    此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
    13、2.
    【解析】
    试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.
    考点:一元二次方程根的判别式.
    14、
    【解析】
    判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.
    【详解】
    解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,
    故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.
    故答案为.
    【点睛】
    考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.
    15、.
    【解析】
    由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而
    表示出梯形BOCA的面积关于k的等式,求解即可.
    【详解】
    如图,连接DC,

    ∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1.
    ∴△ADC的面积为4.
    ∵点A在双曲线y=的第一象限的那一支上,
    ∴设A点坐标为 (x,).
    ∵OC=2AB,∴OC=2x.
    ∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.
    ∴梯形BOCA的面积=,解得.
    【点睛】
    反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.
    16、-672或672
    【解析】
    ∵ ,∴a-b=±2016,
    ∵AO=2BO,A和点B分别在原点的两侧
    ∴a=-2b.
    当a-b=2016时,∴-2b-b=2016,
    解得:b=-672.
    ∴a=−2×(-672)=1342,
    ∴a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, ∴a+b=±672,
    故答案为:−672或672.
    17、45°
    【解析】
    试题解析:

    如图,连接CE,
    ∵AB=2,BC=1,
    ∴DE=EF=1,CD=GF=2,
    在△CDE和△GFE中

    ∴△CDE≌△GFE(SAS),
    ∴CE=GE,∠CED=∠GEF,



    故答案为

    三、解答题(共7小题,满分69分)
    18、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本
    【解析】
    (1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.
    (2)根据题意列出不等式解答即可.
    【详解】
    (1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:
    =4,
    解得:x=10,
    经检验:x=10是原方程的解,
    ∴1.5x=15,
    答:文学书的单价为10元,则科普书的单价为15元.
    (2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,
    解得:m≤27.2,
    ∴最多买科普书27本.
    【点睛】
    此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.
    19、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    20、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    21、(1)117(2)见解析(3)B(4)30
    【解析】
    (1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;
    (2)根据以上所求结果即可补全图形;
    (3)根据中位数的定义求解可得;
    (4)总人数乘以样本中A等级人数所占比例可得.
    【详解】
    解:(1)∵总人数为18÷45%=40人,
    ∴C等级人数为40﹣(4+18+5)=13人,
    则C对应的扇形的圆心角是360°×=117°,
    故答案为117;
    (2)补全条形图如下:

    (3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
    所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
    故答案为B.
    (4)估计足球运球测试成绩达到A级的学生有300×=30人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
    【解析】
    (1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
    (2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
    (3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
    【详解】
    (1)如图①,延长CD至G,使得DG=BE,
    ∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
    ∴△ABE≌△ADG,
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=45°,∠BAD=90°,
    ∴∠BAE+∠DAF=45°,
    ∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
    又∵AF=AF,
    ∴△AEF≌△AEG,
    ∴EF=GF=DG+DF=BE+DF,
    故答案为:BE+DF=EF;
    (2)存在.
    在等边三角形ABC中,AB=BC,∠ABC=60°,
    如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
    由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
    ∴△DBE是等边三角形,
    ∴DE=BD,
    ∴在△DCE中,DE<DC+CE=4+2=6,
    ∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
    ∴BD的最大值为6;
    (3)存在.
    如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
    ∵AB=BD,∠ABC=∠DBE,BC=BE,
    ∴△ABC≌△DBE,
    ∴DE=AC,
    ∵在等边三角形BCE中,EF⊥BC,
    ∴BF=BC=2,
    ∴EF=BF=×2=2,
    以BC为直径作⊙F,则点D在⊙F上,连接DF,
    ∴DF=BC=×4=2,
    ∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.

    【点睛】
    本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
    23、(1)m=8,n=-2;(2) 点F的坐标为,
    【解析】
    分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
    详解:(1)如图②

    ∵ 点A的坐标为,点C与点A关于原点O对称,
    ∴ 点C的坐标为.
    ∵ AB⊥x轴于点B,CD⊥x轴于点D,
    ∴ B,D两点的坐标分别为,.
    ∵ △ABD的面积为8,,
    ∴ .
    解得 . ∵ 函数()的图象经过点,
    ∴ .
    (2)由(1)得点C的坐标为.
    ① 如图,当时,设直线与x轴,

    y轴的交点分别为点,.
    由 CD⊥x轴于点D可得CD∥.
    ∴ △CD∽△ O.
    ∴ .
    ∵ ,
    ∴ .
    ∴ .
    ∴ 点的坐标为.
    ②如图,当时,设直线与x轴,y轴的交点分别为
    点,.

    同理可得CD∥,.
    ∵ ,
    ∴ 为线段的中点,.
    ∴ .
    ∴ 点的坐标为.
    综上所述,点F的坐标为,.
    点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.
    24、这栋楼的高度BC是米.
    【解析】
    试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
    试题解析:
    解:∵°,°,°,AD=100,

    ∴在Rt中,,
    在Rt中,.
    ∴.
    点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.

    相关试卷

    湖北省宜昌伍家岗区四校联考2022年中考数学全真模拟试题含解析:

    这是一份湖北省宜昌伍家岗区四校联考2022年中考数学全真模拟试题含解析,共23页。试卷主要包含了若分式有意义,则的取值范围是,下列各式等内容,欢迎下载使用。

    湖北省襄阳襄州区五校联考2021-2022学年中考数学全真模拟试题含解析:

    这是一份湖北省襄阳襄州区五校联考2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了﹣18的倒数是等内容,欢迎下载使用。

    2022年江苏省苏州姑苏区五校联考中考数学全真模拟试题含解析:

    这是一份2022年江苏省苏州姑苏区五校联考中考数学全真模拟试题含解析,共25页。试卷主要包含了计算,化简•a5所得的结果是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map