|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省姜堰区中考二模数学试题含解析
    立即下载
    加入资料篮
    2022届江苏省姜堰区中考二模数学试题含解析01
    2022届江苏省姜堰区中考二模数学试题含解析02
    2022届江苏省姜堰区中考二模数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省姜堰区中考二模数学试题含解析

    展开
    这是一份2022届江苏省姜堰区中考二模数学试题含解析,共25页。试卷主要包含了某种圆形合金板材的成本y等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列运算正确的是(  )
    A.(a2)4=a6 B.a2•a3=a6 C. D.
    2.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )

    A.30,28 B.26,26 C.31,30 D.26,22
    3.sin45°的值等于(  )
    A. B.1 C. D.
    4.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
    A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
    B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
    C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
    D.两个角互为邻补角
    5.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    6.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是(  )

    A.2cm B.4cm C.6cm D.8cm
    7.已知am=2,an=3,则a3m+2n的值是(  )
    A.24 B.36 C.72 D.6
    8.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).

    A.50° B.40° C.30° D.25°
    9.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )

    A.3.5 B.4 C.7 D.14
    10.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    11.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )

    A.2人 B.16人
    C.20人 D.40人
    12.下列计算正确的是(    ).
    A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
    C.x6÷x3=x2 D.=2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.化简二次根式的正确结果是_____.
    14.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.

    15.计算=_____.
    16.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.

    17.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
    18.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
    (1)求该抛物线的解析式和顶点坐标;
    (2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
    ①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
    ②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).

    20.(6分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.

    (1)求证:;
    (2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果与相似,求BP的长.
    21.(6分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    22.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
    (1)如图1,若抛物线经过点A和D(﹣2,0).
    ①求点C的坐标及该抛物线解析式;
    ②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
    (2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.

    23.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.

    24.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).

    (1)在,,中,正方形ABCD的“关联点”有_____;
    (2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
    (3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
    25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    26.(12分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.
    27.(12分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
    2、B.
    【解析】
    试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
    考点:中位数;加权平均数.
    3、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
    4、C
    【解析】
    熟记反证法的步骤,然后进行判断即可.
    解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
    A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
    B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
    C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
    D、由于无法说明两角具体的大小关系,故D错误.
    故选C.
    5、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    6、C
    【解析】
    由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.
    【详解】
    ∵∥
    ∴△ADE∽△ABC


    ∴AC=6cm
    故选C.
    考点:相似三角形的判定和性质
    点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.
    7、C
    【解析】
    试题解析:∵am=2,an=3,
    ∴a3m+2n
    =a3m•a2n
    =(am)3•(an)2
    =23×32
    =8×9
    =1.
    故选C.
    8、B
    【解析】
    解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,
    根据平角为180°可得,∠2=90°﹣50°=40°.
    故选B.

    【点睛】
    本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
    9、A
    【解析】
    根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
    【详解】
    解:∵菱形ABCD的周长为28,
    ∴AB=28÷4=7,OB=OD,
    ∵E为AD边中点,
    ∴OE是△ABD的中位线,
    ∴OE=AB=×7=3.1.
    故选:A.
    【点睛】
    本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    10、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    11、C
    【解析】
    先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
    【详解】
    400×人.
    故选C.
    【点睛】
    考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
    12、D
    【解析】
    分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
    详解:(x+y)2=x2+2xy+y2,A错误;
    (-xy2)3=-x3y6,B错误;
    x6÷x3=x3,C错误;
    ==2,D正确;
    故选D.
    点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣a
    【解析】
    , .
    .
    14、1
    【解析】
    由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,
    而第20个数和第21个数都是1(小时),则中位数是1小时.
    故答案为1.
    15、0
    【解析】
    分析:先计算乘方、零指数幂,再计算加减可得结果.
    详解:1-1=0
    故答案为0.
    点睛:零指数幂成立的条件是底数不为0.
    16、135
    【解析】
    试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.
    考点:解直角三角形的应用.
    17、6.
    【解析】
    分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
    详解: 设扇形的半径为r,
    根据题意得:,
    解得 :r=6
    故答案为6.
    点睛: 此题考查弧长公式,关键是根据弧长公式解答.
    18、.
    【解析】
    股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.
    【详解】
    设这两天此股票股价的平均增长率为x,由题意得
    (1﹣10%)(1+x)2=1.
    故答案为:(1﹣10%)(1+x)2=1.
    【点睛】
    本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
    【解析】
    1)把0(0,0),A(4,4v3)的坐标代入
    y=﹣x2+bx+c,转化为解方程组即可.
    (2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
    (3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
    ②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
    【详解】
    (1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
    得,
    解得,
    ∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
    所以抛物线的顶点坐标为(,);
    (2)①由题意B(5,0),A(4,4),
    ∴直线OA的解析式为y=x,AB==7,
    ∵抛物线的对称轴x=,
    ∴P(,).
    如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,

    ∵QC∥OB,
    ∴∠CQB=∠QBO=∠QBC,
    ∴CQ=BC=OB=5,
    ∴四边形BOQC是平行四边形,
    ∵BO=BC,
    ∴四边形BOQC是菱形,
    设Q(m,),
    ∴OQ=OB=5,
    ∴m2+()2=52,
    ∴m=±,
    ∴点Q坐标为(﹣,)或(,);
    ②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.

    ∵AB=7,BD=5,
    ∴AD=2,D(,),
    ∵OH=HD,
    ∴H(,),
    ∴直线BH的解析式为y=﹣x+,
    当y=时,x=0,
    ∴Q(0,).
    【点睛】
    本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.
    20、(1)见解析;(2);(3)当或8时,与相似.
    【解析】
    (1)想办法证明即可解决问题;
    (2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
    (3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
    【详解】
    (1)证明:四边形ABCD是等腰梯形,






    .
    (2)解:作于M,于N.则四边形是矩形.

    在中,,




    .
    (3)解:,


    相似时,与相似,

    当时,,此时,
    当时,,此时,
    综上所述,当PB=5或8时,与△相似.
    【点睛】
    本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
    21、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    22、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;
    【解析】
    (1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.
    【详解】
    (1)①如图2,∵A(1,3),B(1,1),
    ∴OA=3,OB=1,
    由旋转知,∠ABC=91°,AB=CB,
    ∴∠ABO+∠CBE=91°,
    过点C作CG⊥OB于G,
    ∴∠CBG+∠BCG=91°,
    ∴∠ABO=∠BCG,
    ∴△AOB≌△GBC,
    ∴CG=OB=1,BG=OA=3,
    ∴OG=OB+BG=4
    ∴C(4,1),
    抛物线经过点A(1,3),和D(﹣2,1),
    ∴,
    ∴,
    ∴抛物线解析式为y=﹣x2+x+3;
    ②由①知,△AOB≌△EBC,
    ∴∠BAO=∠CBF,
    ∵∠POB=∠BAO,
    ∴∠POB=∠CBF,
    如图1,OP∥BC,
    ∵B(1,1),C(4,1),
    ∴直线BC的解析式为y=x﹣,
    ∴直线OP的解析式为y=x,
    ∵抛物线解析式为y=﹣x2+x+3;
    联立解得,或(舍)
    ∴P(,);
    在直线OP上取一点M(3,1),
    ∴点M的对称点M'(3,﹣1),
    ∴直线OP'的解析式为y=﹣x,
    ∵抛物线解析式为y=﹣x2+x+3;
    联立解得,或(舍),
    ∴P'(,﹣);
    (2)同(1)②的方法,如图3,
    ∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,
    ∴,
    ∴抛物线y=ax2﹣6ax+8a+1,
    令y=1,
    ∴ax2﹣6ax+8a+1=1,
    ∴x1×x2=
    ∵符合条件的Q点恰好有2个,
    ∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,
    ∴x1×x2=≤1,
    ∵a<1,
    ∴8a+1≥1,
    ∴a≥﹣,
    即:﹣≤a<1.



    【点睛】
    本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.
    23、(1)证明见解析;(2)BC=,AD=.
    【解析】
    分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
    (2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
    详解:(1)如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵BE平分∠ABC,
    ∴∠OBE=∠CBE,
    ∴∠OEB=∠CBE,
    ∴OE∥BC,
    又∵∠C=90°,
    ∴∠AEO=90°,即OE⊥AC,
    ∴AC为⊙O的切线;
    (2)∵ED⊥BE,
    ∴∠BED=∠C=90°,
    又∵∠DBE=∠EBC,
    ∴△BDE∽△BEC,
    ∴,即,
    ∴BC=;
    ∵∠AEO=∠C=90°,∠A=∠A,
    ∴△AOE∽△ABC,
    ∴,即,
    解得:AD=.
    点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
    24、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
    【解析】
    (1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
    (2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
    (3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
    【详解】
    (1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),

    观察图象可知:正方形ABCD的“关联点”为P2,P3;
    (2)作正方形ABCD的内切圆和外接圆,

    ∴OF=1,,.
    ∵E是正方形ABCD的“关联点”,
    ∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
    ∵点E在直线上,
    ∴点E在线段FG上.
    分别作FF’⊥x轴,GG’⊥x轴,
    ∵OF=1,,
    ∴,.
    ∴.
    根据对称性,可以得出.
    ∴或.
    (3)∵、N(0,1),
    ∴,ON=1.
    ∴∠OMN=60°.
    ∵线段MN上的每一个点都是正方形ABCD
    的“关联点”,
    ①MN与小⊙Q相切于点F,如图3中,

    ∵QF=1,∠OMN=60°,
    ∴.
    ∵,
    ∴.
    ∴.
    ②M落在大⊙Q上,如图4中,

    ∵,,
    ∴.
    ∴.
    综上:.
    【点睛】
    本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
    25、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    26、2
    【解析】
    先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.
    【详解】
    解:原式=2+2﹣+2
    =2﹣2+2
    =2.
    【点睛】
    本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.
    27、(1)见解析;(2)EF=.
    【解析】
    (1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;
    (2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.
    【详解】
    (1)∵∠BAC=90°,∠EAD=45°,
    ∴∠BAE+∠DAC=45°,
    ∵将△ADC绕点A顺时针旋转90°,得到△AFB,
    ∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
    ∴∠BAF+∠BAE=45°=∠FAE,
    ∴∠FAE=∠DAE,AD=AF,AE=AE,
    ∴△AEF≌△AED(SAS),
    ∴DE=EF
    (2)∵AB=AC=2,∠BAC=90°,
    ∴BC=4,
    ∵CD=1,
    ∴BF=1,BD=3,即BE+DE=3,
    ∵∠ABF=∠ABC=45°,
    ∴∠EBF=90°,
    ∴BF2+BE2=EF2,
    ∴1+(3﹣EF)2=EF2,
    ∴EF=
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.

    相关试卷

    2024年江苏省泰州市姜堰区中考数学一模试卷(含详细答案解析): 这是一份2024年江苏省泰州市姜堰区中考数学一模试卷(含详细答案解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年江苏省泰州市姜堰区中考数学二模试卷(含解析): 这是一份2023年江苏省泰州市姜堰区中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析: 这是一份江苏省姜堰区溱潼二中2022年中考三模数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列实数中是无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map