![2022届河南省益阳市赫山区市级名校中考猜题数学试卷含解析01](http://m.enxinlong.com/img-preview/2/3/13064314/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届河南省益阳市赫山区市级名校中考猜题数学试卷含解析02](http://m.enxinlong.com/img-preview/2/3/13064314/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届河南省益阳市赫山区市级名校中考猜题数学试卷含解析03](http://m.enxinlong.com/img-preview/2/3/13064314/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届河南省益阳市赫山区市级名校中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.数据4,8,4,6,3的众数和平均数分别是( )
A.5,4 B.8,5 C.6,5 D.4,5
2.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A. B. C. D.
3.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米.
A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
4.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
5.函数y=自变量x的取值范围是( )
A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
6.如图,由四个正方体组成的几何体的左视图是( )
A. B. C. D.
7.下列各数中,相反数等于本身的数是( )
A.–1 B.0 C.1 D.2
8.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
9.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为
A. B. C. D.
10.抛物线经过第一、三、四象限,则抛物线的顶点必在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
12.下列各组单项式中,不是同类项的一组是( )
A.和 B.和 C.和 D.和3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
14.如果x+y=5,那么代数式的值是______.
15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)
16.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
17.点G是三角形ABC的重心,,,那么 =_____.
18.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
①两人相遇前,甲的速度小于乙的速度;
②出发后1小时,两人行程均为10km;
③出发后1.5小时,甲的行程比乙多3km;
④甲比乙先到达终点.
其中正确的有_____个.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解不等式组,请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式的解集为 .
20.(6分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.
21.(6分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
22.(8分)计算:
23.(8分)已知是的函数,自变量的取值范围是的全体实数,如表是与的几组对应值.
小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出时所对应的点,并写出 .
(4)结合函数的图象,写出该函数的一条性质: .
24.(10分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
25.(10分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0
1
2
3
3
6
说明:补全表格时相关数据保留一位小数
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.
26.(12分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
27.(12分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
【详解】
∵4出现了2次,出现的次数最多,
∴众数是4;
这组数据的平均数是:(4+8+4+6+3)÷5=5;
故选D.
2、C
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
【详解】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;
B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;
C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;
D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.
故选C
【点睛】
考核知识点:正方体的表面展开图.
3、C
【解析】
423公里=423 000米=4.23×105米.
故选C.
4、D
【解析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
5、B
【解析】
由题意得,
x-1≥0且x-3≠0,
∴x≥1且x≠3.
故选B.
6、B
【解析】
从左边看可以看到两个小正方形摞在一起,故选B.
7、B
【解析】
根据相反数的意义,只有符号不同的数为相反数.
【详解】
解:相反数等于本身的数是1.
故选B.
【点睛】
本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.
8、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
9、C
【解析】
科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将9500000000000km用科学记数法表示为.
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、A
【解析】
根据二次函数图象所在的象限大致画出图形,由此即可得出结论.
【详解】
∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.
故选A.
【点睛】
本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.
11、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
12、A
【解析】
如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.
【详解】
根据题意可知:x2y和2xy2不是同类项.
故答案选:A.
【点睛】
本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
【点睛】
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
14、1
【解析】
先将分式化简,然后将x+y=1代入即可求出答案
【详解】
当x+y=1时,
原式
=x+y=1,
故答案为:1.
【点睛】
本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.
15、40.0
【解析】
首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.
【详解】
过点A作AE∥BD,交CD于点E,
∵AB⊥BD,CD⊥BD,
∴∠BAE=∠ABD=∠BDE=90°,
∴四边形ABDE是矩形,
∴AE=BD=20m,DE=AB=0.8m,
在Rt△ACE中,∠CAE=63°,
∴CE=AE•tan63°=20×1.96≈39.2(m),
∴CD=CE+DE=39.2+0.8=40.0(m).
答:筒仓CD的高约40.0m,
故答案为:40.0
【点睛】
此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.
16、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
17、.
【解析】
根据题意画出图形,由,,根据三角形法则,即可求得的长,又由点G是△ABC的重心,根据重心的性质,即可求得.
【详解】
如图:BD是△ABC的中线,
∵,
∴=,
∵,
∴=﹣,
∵点G是△ABC的重心,
∴==﹣,
故答案为: ﹣.
【点睛】
本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.
18、1
【解析】
试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
由图可得,两人在1小时时相遇,行程均为10km,故②正确;
甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
【解析】
先求出不等式的解集,再求出不等式组的解集即可.
【详解】
解:(1)解不等式①,得x≤1,
(1)解不等式②,得x≥﹣1,
(3)把不等式①和②的解集在数轴上表示出来:
;
(4)原不等式组的解集为﹣1≤x≤1,
故答案为x≤1,x≥﹣1,﹣1≤x≤1.
【点睛】
本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
20、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
【解析】
(1)将点A的坐标代入解析式求解可得;
(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
【详解】
(1)将点A(4,3)代入y=,得:k=12,
则反比例函数解析式为y=;
(2)如图,过点A作AC⊥x轴于点C,
则OC=4、AC=3,
∴OA==1,
∵AB∥x轴,且AB=OA=1,
∴点B的坐标为(9,3);
(3)∵点B坐标为(9,3),
∴OB所在直线解析式为y=x,
由可得点P坐标为(6,2),(负值舍去),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(6,3),
∴AE=2、PE=1、PD=2,
则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
【点睛】
本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
21、(1)y=19x-1(x>0且x是整数) (2)6000件
【解析】
(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;
(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.
【详解】
(1)依题意得:y=80x-60x-0.5x•2-1,
化简得:y=19x-1,
∴所求的函数关系式为y=19x-1.(x>0且x是整数)
(2)当y=106000时,代入得:106000=19x-1,
解得x=6000,
∴这个月该厂生产产品6000件.
【点睛】
本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.
22、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
23、(1);(2)见解析;(3);(4)当时,随的增大而减小.
【解析】
(1)根据表中,的对应值即可得到结论;
(2)按照自变量由小到大,利用平滑的曲线连结各点即可;
(3)在所画的函数图象上找出自变量为7所对应的函数值即可;
(4)利用函数图象的图象求解.
【详解】
解:(1)当自变量是﹣2时,函数值是;
故答案为:.
(2)该函数的图象如图所示;
(3)当时所对应的点 如图所示,
且;
故答案为:;
(4)函数的性质:当时,随的增大而减小.
故答案为:当时,随的增大而减小.
【点睛】
本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.
24、(1)m=3,k=12;(2)或
【解析】
【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
【详解】
解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
∴k=xy,
∴k=m(m+1)=(m+3)(m-1),
∴m2+m=m2+2m-3,解得m=3,
∴k=3×(3+1)=12.
(2)∵m=3,
∴A(3,4),B(6,2).
设直线AB的函数表达式为y=k′x+b(k′≠0),
则
解得
∴直线AB的函数表达式为y=-x+6.
(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
∵由(1)知:A(3,4),B(6,2),
∴AP=PM=2,BP=PN=3,
∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).
【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
25、(1)(2)详见解析;(3).
【解析】
(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
【详解】
经过测量,时,y值为
根据题意,画出函数图象如下图:
根据图象,可以发现,y的取值范围为:,
,
故答案为.
【点睛】
本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
26、不需要改道行驶
【解析】
解:过点A作AH⊥CF交CF于点H,由图可知,
∵∠ACH=75°-15°=60°,
∴.
∵AH>100米,
∴消防车不需要改道行驶.
过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.
27、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
2022届新疆吐鲁番市高昌区市级名校中考猜题数学试卷含解析: 这是一份2022届新疆吐鲁番市高昌区市级名校中考猜题数学试卷含解析,共24页。试卷主要包含了下列运算正确的是,一、单选题等内容,欢迎下载使用。
2022届河南省商丘市梁园区市级名校中考猜题数学试卷含解析: 这是一份2022届河南省商丘市梁园区市级名校中考猜题数学试卷含解析,共21页。试卷主要包含了下列图形中,不是轴对称图形的是,下列四个实数中是无理数的是等内容,欢迎下载使用。
2022届河南省益阳市赫山区市级名校中考数学猜题卷含解析: 这是一份2022届河南省益阳市赫山区市级名校中考数学猜题卷含解析,共18页。试卷主要包含了二次函数y=ax2+bx+c,下列各数中,比﹣1大1的是,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。