终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届安顺市重点中学中考数学模试卷含解析

    立即下载
    加入资料篮
    2022届安顺市重点中学中考数学模试卷含解析第1页
    2022届安顺市重点中学中考数学模试卷含解析第2页
    2022届安顺市重点中学中考数学模试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安顺市重点中学中考数学模试卷含解析

    展开

    这是一份2022届安顺市重点中学中考数学模试卷含解析,共24页。试卷主要包含了下列计算正确的是,下列说法正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    2.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    3.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是(  )
    A.方有两个相等的实数根 B.方程有一根等于0
    C.方程两根之和等于0 D.方程两根之积等于0
    4.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为(  )

    A.50° B.55° C.60° D.65°
    5.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )

    A.160米 B.(60+160) C.160米 D.360米
    6.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    7.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是(  )

    A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
    B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
    C.先后两次掷一枚质地均匀的硬币,两次都出现反面
    D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
    8.下列计算正确的是(  )
    A.a3﹣a2=a B.a2•a3=a6
    C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
    9.下列说法正确的是( )
    A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
    B.为了解全国中学生的心理健康情况,应该采用普查的方式
    C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
    D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
    10.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    11.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是(  )
    A.①② B.①③ C.①④ D.①③④
    12.下列说法正确的是(   )
    A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
    B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
    C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
    D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.对于函数y= ,当函数y﹤-3时,自变量x的取值范围是____________ .
    14.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.

    15.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.

    16.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.

    17.因式分解:9a3b﹣ab=_____.
    18.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:

    时间(分钟)
    里程数(公里)
    车费(元)
    小明
    8
    8
    12
    小刚
    12
    10
    16
    (1)求x,y的值;
    (2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
    20.(6分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题:
    (1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;

    (2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.
    21.(6分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m=   ,n=   ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
    22.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    23.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
    (1)求证:△BDE≌△BCE;
    (2)试判断四边形ABED的形状,并说明理由.

    24.(10分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
    (1)求∠AOC的度数;
    (2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
    (3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.

    25.(10分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
    (1)求一台A型无人机和一台B型无人机的售价各是多少元?
    (2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
    ①求y与x的关系式;
    ②购进A型、B型无人机各多少台,才能使总费用最少?
    26.(12分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
    (1)A、B两点之间的距离是   米,甲机器人前2分钟的速度为   米/分;
    (2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
    (3)若线段FG∥x轴,则此段时间,甲机器人的速度为   米/分;
    (4)求A、C两点之间的距离;
    (5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

    27.(12分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    2、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    3、C
    【解析】
    试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
    解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
    把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
    ∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
    ∴1+(﹣1)=0,
    即只有选项C正确;选项A、B、D都错误;
    故选C.
    4、D
    【解析】
    试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
    考点:圆的基本性质
    5、C
    【解析】
    过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
    【详解】
    如图所示,过点A作AD⊥BC于点D.

    在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
    在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
    ∴BC=BD+DC=m.
    故选C.
    【点睛】
    本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
    6、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    7、D
    【解析】
    根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
    【详解】
    解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
    A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
    B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
    C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
    D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
    8、D
    【解析】
    各项计算得到结果,即可作出判断.
    解:A、原式不能合并,不符合题意;
    B、原式=a5,不符合题意;
    C、原式=a2﹣2ab+b2,不符合题意;
    D、原式=﹣a6,符合题意,
    故选D
    9、C
    【解析】
    众数,中位数,方差等概念分析即可.
    【详解】
    A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
    B、全国中学生人口多,只需抽样调查就行了,故是错误的;
    C、这组数据的众数和中位数都是8,故是正确的;
    D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
    【点睛】
    考核知识点:众数,中位数,方差.
    10、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
    11、C
    【解析】
    根据倒数的定义,分别进行判断即可得出答案.
    【详解】
    ∵①1和1;1×1=1,故此选项正确;
    ②-1和1;-1×1=-1,故此选项错误;
    ③0和0;0×0=0,故此选项错误;
    ④−和−1,-×(-1)=1,故此选项正确;
    ∴互为倒数的是:①④,
    故选C.
    【点睛】
    此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    12、D
    【解析】
    根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
    【详解】
    解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
    B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
    C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
    D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
    故选D
    【点睛】
    本题考查了概率的意义,正确理解概率的含义是解决本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-

    相关试卷

    2022年重点中学中考数学五模试卷含解析:

    这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2022届青海省重点中学中考数学五模试卷含解析:

    这是一份2022届青海省重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣3的相反数是等内容,欢迎下载使用。

    2022届襄樊市重点中学中考数学模试卷含解析:

    这是一份2022届襄樊市重点中学中考数学模试卷含解析,共21页。试卷主要包含了在平面直角坐标系中,将点P,化简的结果是,八边形的内角和为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map