年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年新疆新源县达标名校中考数学押题卷含解析

    2021-2022学年新疆新源县达标名校中考数学押题卷含解析第1页
    2021-2022学年新疆新源县达标名校中考数学押题卷含解析第2页
    2021-2022学年新疆新源县达标名校中考数学押题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年新疆新源县达标名校中考数学押题卷含解析

    展开

    这是一份2021-2022学年新疆新源县达标名校中考数学押题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
    A.2个B.3个C.4个D.5个
    2.已知3x+y=6,则xy的最大值为( )
    A.2B.3C.4D.6
    3.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )
    A.B.
    C.D.
    4.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
    A.168(1﹣x)2=108B.168(1﹣x2)=108
    C.168(1﹣2x)=108D.168(1+x)2=108
    5.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )
    A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人
    6.下列图形中,属于中心对称图形的是( )
    A.B.
    C.D.
    7.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
    A.主视图B.俯视图C.左视图D.一样大
    8.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是
    A.4B.C.5D.6
    9.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
    A.36°B.54°C.72°D.108°
    10.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为( )
    A.1B.2C.3D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
    12.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.
    13.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
    14.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.
    15.因式分解:a2b+2ab+b= .
    16.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
    三、解答题(共8题,共72分)
    17.(8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
    画出旋转之后的△AB′C′;求线段AC旋转过程中扫过的扇形的面积.
    18.(8分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .
    19.(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.
    (1)求该抛物线的解析式;
    (2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
    (3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
    20.(8分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.
    (1)求教学楼的高度;
    (2)求的值.
    21.(8分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:
    (1)小芳和爸爸上山时的速度各是多少?
    (2)求出爸爸下山时CD段的函数解析式;
    (3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?
    22.(10分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
    (1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
    (2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
    23.(12分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
    24.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
    【详解】
    如图,
    分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
    ∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
    故选C.
    【点睛】
    本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
    2、B
    【解析】
    根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.
    【详解】
    解:∵1x+y=6,
    ∴y=-1x+6,
    ∴xy=-1x2+6x=-1(x-1)2+1.
    ∵(x-1)2≥0,
    ∴-1(x-1)2+1≤1,即xy的最大值为1.
    故选B.
    【点睛】
    考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.
    3、A
    【解析】
    分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.
    详解:设他上月买了x本笔记本,则这次买了(x+20)本,
    根据题意得:.
    故选A.
    点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.
    4、A
    【解析】
    设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
    【详解】
    设每次降价的百分率为x,
    根据题意得:168(1-x)2=1.
    故选A.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
    5、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2536000人=2.536×106人.
    故选C.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【解析】
    如图,该几何体主视图是由5个小正方形组成,
    左视图是由3个小正方形组成,
    俯视图是由5个小正方形组成,
    故三种视图面积最小的是左视图,
    故选C.
    8、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.
    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    9、C
    【解析】
    正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
    故选C.
    10、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、或
    【解析】
    分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
    【详解】
    当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:
    点的坐标为,B点的坐标为,
    点的坐标为;
    当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:
    点的坐标为,B点的坐标为,
    点的坐标为.
    综上所述:这个旋转中心的坐标为或.
    故答案为或.
    【点睛】
    本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
    12、m>2
    【解析】
    试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣2>2.
    解:因为抛物线y=(m﹣2)x2的开口向上,
    所以m﹣2>2,即m>2,故m的取值范围是m>2.
    考点:二次函数的性质.
    13、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,
    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    14、2
    【解析】
    【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
    试题解析:如图,作AD⊥BC,垂足为D,连接OB,
    ∵AB=AC,∴BD=CD=BC=×8=4,
    ∴AD垂直平分BC,
    ∴AD过圆心O,
    在Rt△OBD中,OD==3,
    ∴AD=AO+OD=8,
    在Rt△ABD中,tan∠ABC==2,
    故答案为2.
    【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
    15、b2
    【解析】
    该题考查因式分解的定义
    首先可以提取一个公共项b,所以a2b+2ab+b=b(a2+2a+1)
    再由完全平方公式(x1+x2)2=x12+x22+2x1x2
    所以a2b+2ab+b=b(a2+2a+1)=b2
    16、15π
    【解析】
    【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
    【详解】设圆锥母线长为l,∵r=3,h=4,
    ∴母线l=,
    ∴S侧=×2πr×5=×2π×3×5=15π,
    故答案为15π.
    【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
    三、解答题(共8题,共72分)
    17、.(1)见解析(2)
    【解析】
    (1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可.
    (2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.
    【详解】
    解:(1)△AB′C′如图所示:
    (2)由图可知,AC=2,
    ∴线段AC旋转过程中扫过的扇形的面积.
    18、甲、乙获胜的机会不相同.
    【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.

    ∴甲、乙获胜的机会不相同.
    考点:可能性大小的判断
    点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.
    19、(1);(2);(3)或.
    【解析】
    (1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
    (2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
    (3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
    【详解】
    (1)抛物线的图象经过,,,
    把,,代入得:
    解得:,
    抛物线解析式为;
    (2)抛物线改写成顶点式为,
    抛物线对称轴为直线,
    ∴对称轴与轴的交点C的坐标为


    设点B的坐标为,,
    则,


    ∴点B的坐标为,
    设直线解析式为:,
    把,代入得:,
    解得:,
    直线解析式为:.
    (3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
    设⊙P与AB相切于点F,与x轴相切于点C,如图1;
    ∴PF⊥AB,AF=AC,PF=PC,
    ∵AC=1+2=3,BC=4,
    ∴AB==5,AF=3,
    ∴BF=2,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,);
    ②设⊙P与AB相切于点F,与轴相切于点C,如图2:
    ∴PF⊥AB,PF=PC,
    ∵AC=3,BC=4, AB=5,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,-6),
    综上所述,与直线和都相切时,
    或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
    20、(1)12m;(2)
    【解析】
    (1)利用即可求解;
    (2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解.
    【详解】
    解:(1)在中,,
    答:教学楼的高度为;
    (2)
    设,则,
    故,
    解得:,

    故.
    【点睛】
    本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.
    21、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.
    【解析】
    分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;
    (2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;
    (3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论.
    详解:(1)小芳上山的速度为120÷6=20(m/min),
    爸爸上山的速度为120÷(21﹣6)+20=28(m/min).
    答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min.
    (2)∵(28﹣20)×(24+6﹣21)=72(m),
    ∴点C的坐标为(30,72);
    ∵二人返回山下的时间相差4min,44﹣4=40(min),
    ∴点D的坐标为(40,192).
    设爸爸下山时CD段的函数解析式为y=kx+b,
    将C(30,72)、D(40,192)代入y=kx+b,
    ,解得:.
    答:爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40).
    (3)设DE段的函数解析式为y=mx+n,
    将D(40,192)、E(44,0)代入y=mx+n,
    ,解得:,
    ∴DE段的函数解析式为y=﹣48x+2112(40≤x≤44).
    当y=12x﹣288>120时,34<x≤40;
    当y=﹣48x+2112>120时,40≤x<41.1.
    41.1﹣34=7.1(min).
    答:二人互相看不见的时间有7.1分钟.
    点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围.
    22、(1);(2)P(小宇“略胜一筹”)=.
    【解析】
    分析:
    (1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;
    (2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.
    详解:
    (1)P(摸出标有数字是3的球)=.
    (2)小宇和小静摸球的所有结果如下表所示:
    从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
    P(小宇“略胜一筹”)=.
    点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.
    23、这栋高楼的高度是
    【解析】
    过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
    【详解】
    过点A作AD⊥BC于点D,
    依题意得,,,AD=120,
    在Rt△ABD中,
    ∴,
    在Rt△ADC中,
    ∴,
    ∴ ,
    答:这栋高楼的高度是.
    【点睛】
    本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
    24、软件升级后每小时生产1个零件.
    【解析】
    分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.
    详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,
    根据题意得:,
    解得:x=60,
    经检验,x=60是原方程的解,且符合题意,
    ∴(1+)x=1.
    答:软件升级后每小时生产1个零件.
    点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    小静
    小宇
    4
    5
    6
    3
    (3,4)
    (3,5)
    (3,6)
    4
    (4,4)
    (4,5)
    (4,6)
    5
    (5,4)
    (5,5)
    (5,6)

    相关试卷

    新疆新源县达标名校2021-2022学年中考数学四模试卷含解析:

    这是一份新疆新源县达标名校2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析:

    这是一份新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析,共17页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    福建省各市区达标名校2021-2022学年中考数学押题卷含解析:

    这是一份福建省各市区达标名校2021-2022学年中考数学押题卷含解析,共23页。试卷主要包含了计算,下列计算正确的是,若  ,则括号内的数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map