年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析

    2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析第1页
    2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析第2页
    2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析

    展开

    这是一份2021-2022学年江苏扬州市仪征市中考数学适应性模拟试题含解析,共20页。试卷主要包含了如图所示的正方体的展开图是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是

    A. B. C. D.
    2.3点40分,时钟的时针与分针的夹角为(  )
    A.140° B.130° C.120° D.110°
    3.若代数式有意义,则实数x的取值范围是(  )
    A.x>0 B.x≥0 C.x≠0 D.任意实数
    4.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    5.下列等式正确的是(  )
    A.x3﹣x2=x B.a3÷a3=a
    C. D.(﹣7)4÷(﹣7)2=﹣72
    6.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    7.如图所示的正方体的展开图是(  )

    A. B. C. D.
    8.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是(  )

    A.AF=CF B.∠DCF=∠DFC
    C.图中与△AEF相似的三角形共有5个 D.tan∠CAD=
    9.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )

    A.30° B.45° C.50° D.75°
    10.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程的解为__________.
    12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.

    13.因式分解:x2﹣3x+(x﹣3)=_____.
    14.化简的结果等于__.
    15.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.

    16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=  ▲  .
    17.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
    (1)求顶点D的坐标(用含a的代数式表示);
    (2)若以AD为直径的圆经过点C.
    ①求抛物线的函数关系式;
    ②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
    ③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

    19.(5分)已知:如图,,,.求证:.

    20.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
    收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
    38 46 42 52 55 43 59 46 25 38
    35 45 51 48 57 49 47 53 58 49
    (1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
    范围
    25≤x≤29
    30≤x≤34
    35≤x≤39
    40≤x≤44
    45≤x≤49
    50≤x≤54
    55≤x≤59
    人数
       
       
       
       
       
       
       
    (说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
    (2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
    平均数
    中位数
    满分率
    46.8
    47.5
    45%
    得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为   ;
    ②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
    平均数
    中位数
    满分率
    45.3
    49
    51.2%
    请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
    21.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
    (Ⅰ)求反比例函数的解析式;
    (Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;
    (Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

    22.(10分)计算﹣14﹣
    23.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
    (1)求每件甲种、乙种玩具的进价分别是多少元?
    (2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
    24.(14分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A。
    【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,

    ∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
    此时,由AB=2,根据勾股定理,得弦AP=x=。
    ∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
    又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
    ∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
    故选A。
    2、B
    【解析】
    根据时针与分针相距的份数乘以每份的度数,可得答案.
    【详解】
    解:3点40分时针与分针相距4+=份,
    30°×=130,
    故选B.
    【点睛】
    本题考查了钟面角,确定时针与分针相距的份数是解题关键.
    3、C
    【解析】
    根据分式和二次根式有意义的条件进行解答.
    【详解】
    解:依题意得:x2≥1且x≠1.
    解得x≠1.
    故选C.
    【点睛】
    考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
    4、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    5、C
    【解析】
    直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
    【详解】
    解:A、x3-x2,无法计算,故此选项错误;
    B、a3÷a3=1,故此选项错误;
    C、(-2)2÷(-2)3=-,正确;
    D、(-7)4÷(-7)2=72,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
    6、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    7、A
    【解析】
    有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
    【详解】
    把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
    故选A
    【点睛】
    本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
    8、D
    【解析】
    由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
    BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
    根据相似三角形的判定即可求解,故C正确,不符合题意;
    由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
    【详解】
    A.∵AD∥BC,

    ∴△AEF∽△CBF,


    ∴,故A正确,不符合题意;
    B. 过D作DM∥BE交AC于N,
    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,

    ∴BM=CM,
    ∴CN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥CF,
    ∴DF=DC,
    ∴∠DCF=∠DFC,故B正确,不符合题意;
    C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
    D. 设AD=a,AB=b,由△BAE∽△ADC,有
    ∵tan∠CAD 故D错误,符合题意.
    故选:D.
    【点睛】
    考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
    9、B
    【解析】
    试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.
    10、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    两边同时乘,得到整式方程,解整式方程后进行检验即可.
    【详解】
    解:两边同时乘,得

    解得,
    检验:当时,≠0,
    所以x=1是原分式方程的根,
    故答案为:x=1.
    【点睛】
    本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    12、1
    【解析】
    主视图、左视图是分别从物体正面、左面看,所得到的图形.
    【详解】
    易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
    故答案为1.
    13、 (x-3)(x+1);
    【解析】
    根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3
    =x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).
    故答案为(x﹣3)(x+1).
    点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.
    14、.
    【解析】
    先通分变为同分母分式,然后根据分式的减法法则计算即可.
    【详解】
    解:原式



    故答案为:.
    【点睛】
    此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.
    15、﹣1
    【解析】
    先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
    【详解】

    在正方形ABCD中,AB=BC,∠ABC=∠BCD,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(SAS),
    ∴∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°
    ∴∠BAE+∠ABF=90°
    ∴∠AGB=90°
    ∴点G在以AB为直径的圆上,
    由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
    ∵正方形ABCD,BC=2,
    ∴AO=1=OG
    ∴OD=,
    ∴DG=−1,
    故答案为−1.
    【点睛】
    本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
    16、
    【解析】
    连接BE,

    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    17、0.8 0
    【解析】
    根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    【详解】
    平均数=(−2+0−1+2+5)÷5=0.8;
    把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,
    故这组数据的中位数是:0.
    故答案为0.8;0.
    【点睛】
    本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.

    三、解答题(共7小题,满分69分)
    18、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).
    【解析】
    分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.
    (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.
    ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.
    ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.
    详解:
    (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
    ∴D(1,﹣4a).
    (2)①∵以AD为直径的圆经过点C,
    ∴△ACD为直角三角形,且∠ACD=90°;
    由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:
    AC2=9a2+9、CD2=a2+1、AD2=16a2+4
    由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
    化简,得:a2=1,由a<0,得:a=﹣1,
    ②∵a=﹣1,
    ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).
    ∵将△OBE绕平面内某一点旋转180°得到△PMN,
    ∴PM∥x轴,且PM=OB=1;
    设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
    ∵BF=2MF,
    ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0
    解得:x1=﹣1(舍去)、x2=.
    ∴M(,)、N(,).
    ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:

    ∵C(0,3)、D(1,4),
    ∴CH=DH=1,即△CHD是等腰直角三角形,
    ∴△QGD也是等腰直角三角形,即:QD2=2QG2;
    设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;
    得:(4﹣b)2=2(b2+4),
    化简,得:b2+8b﹣8=0,解得:b=﹣4±2;
    即点Q的坐标为(1,)或(1,).
    点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.
    19、见解析
    【解析】
    先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.
    【详解】
    证明:∵∠BAD=∠CAE,
    ∴∠BAD+∠DAC=∠CAE+∠DAC.
    即∠BAC=∠DAE,
    在△ABC和△ADE中,
    ,
    ∴△ABC≌△ADE(SAS).
    ∴BC=DE.
    【点睛】
    本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.
    20、(1)补充表格见解析;(2)①61;②见解析.
    【解析】
    (1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
    【详解】
    (1)补充表格如下:
    范围
    25≤x≤29
    30≤x≤34
    35≤x≤39
    40≤x≤44
    45≤x≤49
    50≤x≤54
    55≤x≤59
    人数
    1
    0
    3
    2
    7
    3
    4
    (2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
    故答案为:61;
    ②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
    从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
    建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
    【点睛】
    本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    21、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).
    【解析】
    试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;
    (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;
    (3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.
    试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,
    ∴-1=,
    ∴m=-3,
    ∴反比例函数的解析式为;
    (2),
    ∴=,
    x2-x-6=0,
    (x-3)(x+2)=0,
    x1=3,x2=-2,
    当x=-2时,y=,
    ∴D(-2,);
    y1>y2时x的取值范围是-2

    相关试卷

    2023年江苏省扬州市仪征市中考数学第一次适应性试卷(含解析):

    这是一份2023年江苏省扬州市仪征市中考数学第一次适应性试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省扬州市仪征市中考数学模拟试卷(6月份(含解析):

    这是一份2023年江苏省扬州市仪征市中考数学模拟试卷(6月份(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市仪征市2022年中考数学模拟预测题含解析:

    这是一份江苏省扬州市仪征市2022年中考数学模拟预测题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map