年终活动
搜索
    上传资料 赚现金

    2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积

    2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积第1页
    2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积第2页
    2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积第3页
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积

    展开

    这是一份2022年小升初专题精炼 第17讲 长方体和正方体的认识、周长与面积,共14页。试卷主要包含了表面积,长方体和正方体的表面积,6平方米;,28×4等内容,欢迎下载使用。
    第17讲 长方体和正方体的认识、周长与面积
    知识精讲
    知识点一:长方体和正方体的认识
    名称
    长方体
    正方体
    图形
    展开图
    相同点

    6 个
    6 个

    12 条
    12 条
    顶点
    8 个
    8 个
    不同点

    面的特点
    6 个面一般是 长方形 ,也可能有2个相对的是 正方形
    6 个面都是相同的正方形
    面的大小
    相对的面的面积 相等
    6 个面的面积都 相等
    棱长
    相对的棱的长度 相等
    知识点二:长方体和正方体的表面积
    1.表面积:一个立体图形所有面的面积 总和 叫作它的表面积。
    2.长方体和正方体的表面积。
    (1)长方体的表面积= 2×(长×宽+长×高+宽×高) ,用字母表示为:S= 2(ab+ah+bh)
    (2)正方体的表面积= 6×棱长×棱长 ,用字母表示为:S= 6a2 。
    知识点三:长方体和正方体的体积
    1.体积:一个立体图形所占空间的 大小 叫作它的体积。
    2.长方体的体积(容积)= 长×宽×高 ,用字母表示为:V= abh
    3.正方体的体积(容积)= 棱长×棱长×棱长 ,用字母表示为:V= a3
    基础达标百分练
    一、精挑细选(共5题;每题2分,共10分)
    1.(2021六上·隆回期末)某产品说明书上标注包装尺寸为590×505×1400(mm),它们分别表示这个长方体的长、宽、高,根据这组数据,联系生活想象一下它可能是( )。
    A.一台电视机B.一台冰箱C.一部手机
    2.(2021六上·无为期末)用小棒搭一个长方体框架,用了三根就能确定这个长方体的形状和大小的搭法是( )。
    A.B.C.
    3.(2021六上·偃师期末)小军在爸爸的帮助下用一根96厘米长的铁丝刚好制作成一个长方体框架。那么相交于一个顶点的三条棱的长度和是( )厘米。 6 条棱的长度都 相等
    联系
    正方体是特殊的长方体
    A.12B.24C.32D.48
    4.(2021六上·偃师期末)一个装钙奶饼干的长方体盒子高20厘米,底面是100cm2的正方形,一张商标纸正好贴满盒子四周,这张商标纸至少有( )cm2。
    A.200B.400C.800D.2000
    5.(2021六上·偃师月考)一个无盖长方体盒子,长5分米,宽3分米,高3.5分米。给盒子外面包装一层彩纸,需要彩纸( )平方分米。
    A.86B.71C.56
    二、判断我(共5题;每题2分,共10分)
    6.(2021·红塔)把一个长方体锯成两个小长方体后,表面积增加,体积不变。( )
    7.(2021·坡头)棱长6厘米的正方体,它的表面积和体积相等。( )
    8.(2020六上·曲沃期末)一个正方体的棱长是3cm,这个正方体可以看作9个棱长1cm的小正方体组成。( )
    9.用5个同样大的小正方体拼成一个长方体,长方体的表面积和体积都是正方体的5倍。
    10.(2021·苏州)如果一个圆柱的底面积和高与一个长方体的底面积和高都相等,那么这两个直柱体的体积相等,表面积也相等。( )
    三、仔细想,认真填(共8题;每空1分,共10分)
    11.(2021六上·偃师月考)在一个长方体中相交于同一顶点的三条棱的长度之和是8.7分米,则这个长方体的棱长总和为 分米。
    12.(2020六上·滨海期末)一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,前面的玻璃不小心被打坏了,修理时配上的玻璃的面积是 平方分米。
    13.(2020六上·织金期末)一个长方体(不包括正方体)最多有 个面是正方形,此时它其余各面的面积 。
    14.(2020·固阳)用48厘米长的铁丝围成一个最大的正方体,这个正方体的棱长是 厘米.
    15.(2021六上·隆回期末)大小两个正方体棱长比是3:2,那么大小两个正方体表面积的比是 ,体积的比是 。
    16.(2021六上·偃师期末)如图,把一个长5米的长方体木料锯成两段等长的小长方体后,表面积增加60dm2,则原木料的体积是 m3。
    17.一块正方体钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重 千克。
    18.李叔叔用木条钉了一个长30厘米、宽15厘米、高24厘米的长方体框架,现在要给它粘上一层白纸,至少需要白纸 平方厘米。
    四、计算能手(共2题;共20分)
    19.(5分)(2020·南关模拟)下图是一个长方体灯笼面的展开图,如果要根据这个尺寸制作一个灯笼,至少需要多大面积的材料?
    20.(15分)计算下面图形的体积。(单位:厘米)
    (1)(5分)
    (2)(5分)(3)(5分)
    五、解答问题(共7题;共36分)
    21.(5分)如图,这是一个铝合金框组成的鱼缸,侧面的每个面都是正方形,且边长为25厘米。这个鱼缸的侧面准备全用玻璃,那么玻璃的总面积和铝合金框的总长度各是多少?
    22.(5分)一个工具箱的下半部分是棱长为20厘米的正方体,上半部分是圆柱体的一半。这个工具箱的体积是多少立方分米?
    23.(5分)上海世博会上的中国馆——“东方之冠”,造型独特,令世人瞩目。它的顶层是由底部的四根巨型钢筋混凝土核心筒托起,每个核心筒截面为18.6米×18.6米,高68米。这四根核心筒的体积一共是多少立方米?
    24.(5分)(2021六上·无为期末)一个底面是正方形的长方体,把它的侧面展开是一个边长是20厘米的正方形,这个长方体的体积是多少?
    25.(5分)(2021六上·无为期末)有一个长方体容器,底面长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?
    26.(5分)工人叔叔在粉刷教室,教室的长是9米,宽是8米,高是3.6米,门窗面积为21平方米。要粉刷四周墙壁和顶棚,如果粉刷每平方米用环保漆300克,粉刷完这一间教室共用环保漆多少千克?
    27.(6分)一个封闭的长方体容器,高是20cm,长和宽都是8cm,容器内装着水。如果把该容器长、宽都是8cm的面放在桌面上,这时水的高度是16cm,如果把该容器长20cm、宽8cm的面放在桌面上,这时水的高度是多少厘米?
    六、综合提升(共2题;共14分)
    28.(7分)(2021六上·隆回期末)如下图是长方体表面展开图的一部分。(每个小方格表示1平方厘米)
    (1)(5分)请在虚线①、②的旁边将长方体的展开图补充完整。
    (2)这个长方体的表面积是 平方厘米,体积是 立方厘米。
    29.(7分)(2021六上·偃师期末)
    选用上面几种不同规格的纸板,可以围成不同的长方体和正方体。
    (1)小明想围一个体积最大的正方体:他应该选用 号纸板、 张。
    (2)(5分)如果要围两个不同的长方体,分别选择哪些纸板?各几张?填在下表中。(在选用纸板规格的编号下写出需要的张数)





    长方体1





    长方体2





    答案解析
    1.【答案】B
    【完整解答】解:它可能是一台冰箱。
    故答案为:B。
    【思路引导】根据包装相对的尺寸作答即可。
    2.【答案】B
    【完整解答】解:A:三根只能确定长和高,不能确定宽;
    B:这三根能确定长方体的长、宽、高,能确定;
    C:只能确定宽和高,不能确定长。
    故答案为:B。
    【思路引导】要想确定一个长方体的形状和大小,就要确定长方体的长、宽、高。相交于一个顶点的三条棱分别叫做长方体的长、宽、高;所以只有B中的能确定长方体的长宽高。
    3.【答案】B
    【完整解答】解:96÷4=24(厘米)
    故答案为:B。
    【思路引导】96厘米长的铁丝是长方体的棱长和;长方体的棱长和÷4=长方体的长宽高的和;相交于一个顶点的三条棱的长度和就是长方体的长宽高的和。
    4.【答案】C
    【完整解答】解:10厘米×10厘米=100平方厘米,
    10×20×4=800(平方厘米)
    故答案为:C。
    【思路引导】底面是100cm2的正方形,据此可以看出正方形的边长是10厘米;正方形的边长×长方体盒子的高=一个侧面的面积;一个侧面的面积×4=长方体盒子侧面的面积;一张商标纸的面积就是长方体的侧面积。
    5.【答案】B
    【完整解答】解:5×3+5×3.5×2+3×3.5×2=15+35+21=71平方分米,所以需要彩纸71平方分米。
    故答案为:B。
    【思路引导】需要彩纸的面积=长×宽+长×高×2+宽×高×2,据此作答即可。
    6.【答案】(1)正
    【完整解答】解:把一个长方体锯成两个小长方体后,表面积增加,体积不变。原题说法正确。
    故答案为:正确。
    【思路引导】把一个长方体锯成两个小正方体后,表面积会增加两个切面的面积,体积是不变的。
    7.【答案】(1)错误
    【完整解答】解:棱长6厘米的正方体,它的表面积和体积无法进行比较,所以原题说法错误。
    故答案为:错误。
    【思路引导】正方体的表面积=棱长×棱长×6,正方体的体积=棱长×棱长×棱长,两个代表不同的量,表面积的单位是平方厘米,体积的单位是立方厘米,本题据此进行判断。
    8.【答案】(1)错误
    【完整解答】解:3×3×3=27(立方厘米),可以看作27个棱长1cm的小正方体组成。原题错误。
    故答案为:错误。
    【思路引导】正方体的体积和组成这个小正方体的体积和相等,据此解答。
    9.【答案】(1)错误
    【完整解答】 用5个同样大的小正方体拼成一个长方体,长方体的表面积小于正方体的表面积的5倍,体积是正方体的5倍,原题说法错误。
    故答案为:错误。
    【思路引导】用相同的5个小正方体拼成一个大长方体,有些面会重叠,小正方体的表面积和大于长方体的表面积,大长方体的体积是小正方体的5倍,据此判断。
    10.【答案】(1)错误
    【完整解答】解:如果一个圆柱的底面积和高与一个长方体的底面积和高都相等,那么这两个直柱体的体积相等,但表面积不一定相等。
    故答案为:错误。
    【思路引导】长方体的体积=圆柱的体积=底面积×高,但是长方体和圆柱的侧面积不一样,所以表面积不一定相等。11.【答案】34.8
    【完整解答】解:8.7×4=34.8分米,所以这个长方体的棱长总和为34.8分米。
    故答案为:34.8。
    【思路引导】这个长方体的棱长总和=同一顶点的三条棱的长度之和×4,据此代入数值作答即可。
    12.【答案】48
    【完整解答】解:8×6=48(平方分米)
    故答案为:48。
    【思路引导】前面玻璃的长就是长方体的长,是8分米,前面玻璃的宽就是长方体的高,也就是6分米。根据长方形面积公式计算配上玻璃的面积即可。
    13.【答案】2;相等
    【完整解答】解:一个长方体(不包括正方体)最多有2个面是正方形,此时它其余各面的面积相等。
    故答案为:2;相等。
    【思路引导】一个特殊的长方体有相对的两个面是正方形,另外四个面是完全相同的长方形。
    14.【答案】4
    【完整解答】解:48÷12=4(厘米)。
    故答案为:4。
    【思路引导】铁丝的长度就是正方体的棱长和,正方体棱长和=棱长×12,因此用铁丝的长度除以12即可求出棱长。
    15.【答案】9:4;27:8
    【完整解答】解:大小两个正方体表面积的比是32:22=9:4,体积的比是33:23=27:8。
    故答案为:9:4;27:8。
    【思路引导】正方体的表面积的比等于棱长的平方之比;正方体的体积之比等于棱长的立平方之比。
    16.【答案】1.5
    【完整解答】解:60平方分米÷100=0.6平方米;
    0.6÷2=0.3(平方米)
    0.3×5=1.5(立方米)
    故答案为:1.5。
    【思路引导】平方分米÷100=平方米,增加的表面积÷2=长方体的底面积,长方体的底面积×高=长方体的体积。
    17.【答案】7800
    【完整解答】解:10×10×10×7.8
    =100×10×7.8
    =1000×7.8
    =7800(千克)。
    故答案为:7800。
    【思路引导】这块钢锭的质量=体积×平均每立方分米钢的质量;其中,体积=棱长×棱长×棱长。
    18.【答案】3060
    【完整解答】解:(30×15+30×24+15×24)×2
    =(450+720+360)×2
    =(1170+360)×2
    =1530×2
    =3060(平方厘米)。
    故答案为:3060。
    【思路引导】至少需要白纸的面积=(长×宽+长×高+宽×高)×2。
    19.【答案】解:(25×10+25×15+10×15)×2
    =(250+375+150)×2
    =775×2
    =1550(平方厘米)
    答:至少需要1550平方厘米的材料。
    【思路引导】看图可知,这个长方体的长是25cm、宽是10cm、高是15cm,长方体表面积=(长×宽+长×高+宽×高)×2,根据公式计算材料的面积即可。
    20.【答案】(1)解:12×(4÷2)2×3.14
    =12×4×3.14
    =48×3.14
    =150.72(立方厘来)
    (2)解:×12×(8÷2)2×3.14
    =4×50.24
    =200.96(立方厘米)
    (3)解:12×2×5+×22×3.14×9
    =120+4×3.14×3
    =157.68(立方厘米)
    【思路引导】圆柱的体积=(底面直径÷2)2×π×h;圆锥的体积=×(底面直径÷2)2×π×h;长方体的体积=长×宽。据此作答即可。
    21.【答案】解:玻璃的总面积为:25×25 X 6=3750(平方厘米),
    铝合金框的总长度为:25×18=450(厘米)。
    【完整解答】解:玻璃的总面积:25×25×6=3750(平方厘米),
    铝合金框的总长度:25×18=450(厘米)
    答:玻璃的总面积是3750平方厘米,铝合金框的总长度是450厘米。
    【思路引导】玻璃的总面积是6个边长25厘米的正方形的面积;铝合金框共有18条长25厘米的线段,用乘法计算铝合金框的总长度。
    22.【答案】解:3.14×102×20÷2+20 X 20×20=11140(立方厘米)=11.41(立方分米)
    【思路引导】这个工具箱的体积等于半个圆柱的体积加上下面正方体的体积。
    23.【答案】解:18.6×18.6×68×4
    =23525.28×4
    =94101.12(立方米)
    答:这四根核心筒的体积一共是94101.12立方米。
    【思路引导】长方体体积=长×宽×高,根据公式先计算出一根的体积,再乘4就是总体积。
    24.【答案】解:(20÷4)2×20
    =25×20
    =500(cm3)
    答:这个长方体的体积是500cm3。
    【思路引导】底面是正方形,那么侧面就是四个完全相同的长方形,侧面展开后是正方形,说明底面的周长是20厘米,所以用底面周长除以4即可求出底面边长,这样就能求出底面积,用底面积乘高即可求出长方体的体积。
    25.【答案】解:(30×20×6)÷(20×10)
    =3600÷200
    =18(cm)
    答:里面的水深是18厘米。
    【思路引导】水的体积是不变的。先根据原来的放置方法用长乘宽乘水的深度求出水的体积,然后用水的体积除以竖起来后的底面积即可求出此时的水深。
    26.【答案】9×8+(9×3.6+8×3.6)×2-21
    =72+61.2×2-21
    =194.4-21
    =173.4(平方米)
    173.4×300=52020(克)
    52020克=52.02千克
    答:粉刷完这一间教室共用环保漆52.02千克。
    【思路引导】粉刷完这一间教室共用环保漆的质量=粉刷的面积×平均每平方米用环保漆的质量;其中,粉刷的面积=长×宽+(长×高+宽×高)×2-门窗面积;最后单位换算。
    27.【答案】解:8×8×16÷(20×8)
    =1024÷160
    =6.4(厘米)
    答:这时水的高度是6.4厘米。
    【思路引导】长方体体积=底面积×高,根据公式先计算出水的体积,然后用水的体积除以长20cm、宽8cm的长方形面积即可求出此时水的高度。28.【答案】(1)
    (2)22;6
    【思路引导】(1)根据长方形的展开图作答即可;
    (2)长方体的表面积=(长×宽+长×高+宽×高)×2;长方体的体积=长×宽×高。
    29.
    【完整解答】解:(1)小明想围一个体积最大的正方体:他应该选用⑤号纸板6张;
    (2)第一个长方体是长宽都是8厘米,高是10厘米;
    第二个长方体是长宽都是10厘米,高是5厘米;
    故答案为:(1)⑤;6。
    【思路引导】(1)想围一个体积最大的正方体,就要选用边长最大的正方形6块;
    (2)围成的2个正方体,其中的两个面是正方形,其余的四个面相等。





    长方体1
    4张
    2张



    长方体2


    4张

    2张

    相关试卷

    最新小升初数学讲通练透 【小升初提高版】第17讲 长方体和正方体的认识、周长与面积:

    这是一份最新小升初数学讲通练透 【小升初提高版】第17讲 长方体和正方体的认识、周长与面积,文件包含小升初提高版第17讲长方体和正方体的认识周长与面积最新小升初讲通练透教师版doc、小升初提高版第17讲长方体和正方体的认识周长与面积最新小升初讲通练透学生版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    2022年小升初专题精炼 第15讲 圆的认识、周长与面积:

    这是一份2022年小升初专题精炼 第15讲 圆的认识、周长与面积,共17页。试卷主要包含了7D.31,24B.45,71+3等内容,欢迎下载使用。

    2022年小升初专题精炼 第22讲 统计:

    这是一份2022年小升初专题精炼 第22讲 统计,共31页。试卷主要包含了统计表,统计表分类,统计图的种类,0-20等内容,欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map