2021-2022学年北京市宣武区名校中考数学五模试卷含解析
展开
这是一份2021-2022学年北京市宣武区名校中考数学五模试卷含解析,共27页。试卷主要包含了某校40名学生参加科普知识竞赛等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若 ,则括号内的数是
A. B. C.2 D.8
2.以下各图中,能确定的是( )
A. B. C. D.
3.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A. B. C. D.
4.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是( )
A.∠ADC B.∠ABD C.∠BAC D.∠BAD
5.不等式组的解集表示在数轴上正确的是( )
A. B. C. D.
6.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=( )
A.2.5 B.3 C.4 D.5
7.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
8.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( )
A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×105
9.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )
A.31 B.35 C.40 D.50
10.下列各数中,相反数等于本身的数是( )
A.–1 B.0 C.1 D.2
11.某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
12.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若a是方程的根,则=_____.
14.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
15.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.
16.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
17.抛物线y=mx2+2mx+5的对称轴是直线_____.
18.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
20.(6分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
21.(6分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.
22.(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
23.(8分)如下表所示,有A、B两组数:
第1个数
第2个数
第3个数
第4个数
……
第9个数
……
第n个数
A组
﹣6
﹣5
﹣2
……
58
……
n2﹣2n﹣5
B组
1
4
7
10
……
25
……
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
24.(10分)在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点.
(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;
(2)若,
①如图2,当时,求的值;
②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为 .
25.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
26.(12分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
(1)本次抽测的男生人数为 ,图①中m的值为 ;
(2)求本次抽测的这组数据的平均数、众数和中位数;
(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
27.(12分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.
【详解】
解:,
故选:C.
【点睛】
本题考查了有理数的减法,减去一个数等于加上这个数的相反数.
2、C
【解析】
逐一对选项进行分析即可得出答案.
【详解】
A中,利用三角形外角的性质可知,故该选项错误;
B中,不能确定的大小关系,故该选项错误;
C中,因为同弧所对的圆周角相等,所以,故该选项正确;
D中,两直线不平行,所以,故该选项错误.
故选:C.
【点睛】
本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
3、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
4、D
【解析】
∵∠ACD对的弧是,对的另一个圆周角是∠ABD,
∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),
又∵AB为直径,
∴∠ADB=90°,
∴∠ABD+∠BAD=90°,
即∠ACD+∠BAD=90°,
∴与∠ACD互余的角是∠BAD.
故选D.
5、C
【解析】
根据题意先解出的解集是,
把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
表示时要注意方向向左,起始的标记为实心圆点,
综上所述C的表示符合这些条件.
故应选C.
6、A
【解析】
先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
【详解】
∵∠ACB=90°,D为AB中点
∴CD=
∵点E、F分别为BC、BD中点
∴.
故答案为:A.
【点睛】
本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
7、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、A
【解析】
分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值
相关试卷
这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。
这是一份北京市宣武区2022年中考数学全真模拟试卷含解析,共23页。试卷主要包含了平面直角坐标系中的点P,不等式组的解集在数轴上可表示为等内容,欢迎下载使用。
这是一份2022届北京市宣武区重点名校中考一模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,-5的倒数是等内容,欢迎下载使用。