2022年中考数学复习之挑战压轴题(选择题):锐角三角函数(含答案)
展开2022年中考数学复习之挑战压轴题(选择题):锐角三角函数
一.选择题(共10小题)
1.(2021秋•柯桥区期末)Rt△ABC中,∠ACB=90°,∠ABC的平分线交AC于D,M在AC延长线上,N在BD上,MN经过BC中点E,MD=MN,若sinA=,则的值为`( )
A. B. C. D.
2.(2022•南山区模拟)勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为( )
A. B.18 C.16 D.
3.(2020•浙江自主招生)如图,在△ABC中,∠ABC=90°,D为BC的中点,点E在AB上,AD,CE交于点F,AE=EF=4,FC=9,则cos∠ACB的值为( )
A. B. C. D.
4.(2019•吴兴区一模)李白笔下“孤帆一片日边来”描述了在喷薄而出的红日映衬下,远远望见一叶帆船驶来的壮美河山之境.聪明的小芬同学利用几何图形,构造出了此意境!如图,半径为5的⊙O在线段AB上方,且圆心O在线段AB的中垂线上,到AB的距离为,AB=20,线段PQ在边AB上(AP<AQ),PQ=6,以PQ中点C为顶点向上作Rt△CDE,其中∠D=90°,CD=3,sin∠DCE=sin∠DCQ=,设AP=m,当边DE与⊙O有交点时,m的取值范围是( )
A. B.
C. D.
5.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是( )
A. B. C. D.
6.(2021秋•石狮市期末)如图,Rt△ABC中,∠BAC=90°,cosB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
A. B. C. D.3
7.(2021秋•曾都区期末)构建几何图形解决代数问题是“数形结合”思想的重要应用.我们已经知道30°,45°,60°角的三角函数值,现在来求tan22.5°的值:
如图,在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°.设AC=1,则BC=1,AB==BD,所以tan22.5°====﹣1.类比这种方法,计算tan15°的值为( )
A.﹣ B.2﹣ C.+ D.﹣2
8.(2021•呼和浩特)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,下面d及π的值都正确的是( )
A.d=,π≈8sin22.5°
B.d=,π≈4sin22.5°
C.d=,π≈8sin22.5°
D.d=,π≈4sin22.5°
9.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,cosB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
A. B. C. D.2
10.(2021•宽城区一模)我国魏晋时期的数学家刘徽首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率π≈3.14.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形…割的越细,圆的内接正多边形就越接近圆.设圆的半径为R,圆内接正六边形的周长p6=6R,计算.下面计算圆内接正十二边形的周长正确的是( )
A.p12=24Rsin30° B.p12=24Rcos30°
C.p12=24Rsin15° D.p12=24Rcos15°
2022年中考数学复习之挑战压轴题(选择题):锐角三角函数(10题)
参考答案与试题解析
一.选择题(共10小题)
1.(2021秋•柯桥区期末)Rt△ABC中,∠ACB=90°,∠ABC的平分线交AC于D,M在AC延长线上,N在BD上,MN经过BC中点E,MD=MN,若sinA=,则的值为( )
A. B. C. D.
【考点】解直角三角形.
【专题】图形的全等;等腰三角形与直角三角形;解直角三角形及其应用;几何直观;应用意识.
【分析】过D作DH⊥AB于H,延长MN交AB于F,由sinA=,设BC=6x,则AB=7x,而E为BC中点,得BE=BC=3x,根据BD平分∠ABC,可得△BCD≌△BHD(AAS),即有BH=BC=6x,∠CDB=∠HDB,而MD=MN,可得DH∥MN,即知NF⊥AB,根据sin∠BEF=sinA=,得BF=x,从而可得==.
【解答】解:过D作DH⊥AB于H,延长MN交AB于F,如图:
在Rt△ABC中,sinA=,
∴=,
设BC=6x,则AB=7x,
∵E为BC中点,
∴BE=BC=3x,
∵BD平分∠ABC,
∴∠CBD=∠DBH,
∵∠DHB=∠DCB=90°,BD=BD,
∴△BCD≌△BHD(AAS),
∴BH=BC=6x,∠CDB=∠HDB,
∵MD=MN,
∴∠CDB=∠MND,
∴∠MND=∠HDB,
∴DH∥MN,
∵DH⊥AB,
∴MN⊥AB,即NF⊥AB,
∴∠BEF=90°﹣∠EBF=∠A,
∴sin∠BEF=sinA=,
∴=,即=,
∴BF=x,
∵NF⊥AB,DH⊥AB,
∴NF∥DH,
∴===,
故选:A.
【点评】本题考查锐角三角函数的应用,涉及全等三角形,等腰三角形等知识,解题的关键是证明NF⊥AB.
2.(2022•南山区模拟)勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为( )
A. B.18 C.16 D.
【考点】解直角三角形的应用;勾股定理的证明.
【专题】矩形 菱形 正方形;解直角三角形及其应用;推理能力.
【分析】延长QN交AE于H.解直角三角形求出OH,HN,OM即可解决问题.
【解答】解:延长QN交AE于H.
由题意AO=AD=DE=,AE=2,
在Rt△AOH中,∵tan∠AOH==,
∴AH=,
∴OH==,DH=EH=,
∵△NHD∽△HAO,
∴==,
∴DN=1,HN=,
∴ON=OH﹣HN=5,
∵OM=DN=1,
∴MN=5﹣1=4,
∴正方形MNUV的周长为16,
故选:C.
【点评】本题考查解直角三角形的应用,勾股定理,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
3.(2020•浙江自主招生)如图,在△ABC中,∠ABC=90°,D为BC的中点,点E在AB上,AD,CE交于点F,AE=EF=4,FC=9,则cos∠ACB的值为( )
A. B. C. D.
【考点】解直角三角形.
【专题】解直角三角形及其应用;应用意识.
【分析】如图,延长AD到M,使得DM=DF,连接BM.利用全等三角形的性质证明BM=CF=9,AB=BM,利用勾股定理求出BC,AC即可解决问题.
【解答】解:如图,延长AD到M,使得DM=DF,连接BM.
∵BD=DC,∠BDM=∠CDF,DM=DF,
∴△BDM≌△CDF(SAS),
∴CF=BM=9,∠M=∠CFD,
∵CE∥BM,
∴∠AFE=∠M,
∵EA=EF,
∴∠EAF=∠EFA,
∴∠BAM=∠M,
∴AB=BM=9,
∵AE=4,
∴BE=5,
∵∠EBC=90°,
∴BC===12,
∴AC===15,
∴cos∠ACB===,
解法二:应过D作DG平行CE交AB于G,△BDG相似于△BCE,△AEF相似于△AGD.再由题目条件,可得cos角ACB的值,遇到分点问题想平行,构造A或8字型相似.
故选:D.
【点评】本题考查解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
4.(2019•吴兴区一模)李白笔下“孤帆一片日边来”描述了在喷薄而出的红日映衬下,远远望见一叶帆船驶来的壮美河山之境.聪明的小芬同学利用几何图形,构造出了此意境!如图,半径为5的⊙O在线段AB上方,且圆心O在线段AB的中垂线上,到AB的距离为,AB=20,线段PQ在边AB上(AP<AQ),PQ=6,以PQ中点C为顶点向上作Rt△CDE,其中∠D=90°,CD=3,sin∠DCE=sin∠DCQ=,设AP=m,当边DE与⊙O有交点时,m的取值范围是( )
A. B.
C. D.
【考点】解直角三角形的应用;线段垂直平分线的性质;直线与圆的位置关系.
【专题】解直角三角形及其应用.
【分析】如图1所示,当DE在圆O左侧有交点时,DE与圆O相切,延长ED至AB上于点F,记切点为点G,连接OG并延长至AB上于点H,过点O作OI⊥AB,根据已知条件得到△ECF为等腰三角形,求得CE=CF=5,得到PF=8,由切线的性质得到OG⊥DE,即OG∥CD,根据线段垂直平分线的定义得到AI=BI=10,OI=,解直角三角形得到AP=m=AF﹣PF=AI+FI﹣PF=10+()﹣8=;如图2所示,当DE在圆O右侧有交点时,点E在圆O上,延长ED交AB的延长线于点F,过点O作OI⊥AB,过点E作EJ⊥AB,EK⊥OI,由三角函数的定义得到DE=DF=4,CE=CF=5,求得EF=8,根据三角形的面积公式得到EJ=KI=,根据勾股定理得到CJ==,于是得到AP=m=AC﹣CP=AI+CI﹣CP=10+﹣3=,即可得到结论.
【解答】解:如图1所示,当DE在圆O左侧有交点时,DE与圆O相切,延长ED至AB上于点F,
记切点为点G,连接OG并延长至AB上于点H,过点O作OI⊥AB,
∵sin∠DCE=sin∠DCQ=,
∴∠DCE=∠DCQ,
∵∠CDE=90°,
∴△ECF为等腰三角形,
∵CD=3,
∴CE=CF=5,
∵PQ=6,点C为PQ的中点,
∴PC=3,
∴PF=8,
∵DE与圆O相切,切点为点G,
∴OG⊥DE,即OG∥CD,
∴sin∠OHI=sin∠DCE=,
∵圆心O在线段AB的中垂线上,
∴AI=BI=10,OI=,
∴HI=OI•tan∠OHI=×=,OH=×=,
∴GH=,
在Rt△FGH中,∵∠FHG=∠FCD,
∴FH=HG×=,
∴FI=FH﹣HI=,
∴AP=m=AF﹣PF=AI+FI﹣PF=10+()﹣8=;
如图2所示,当DE在圆O右侧有交点时,点E在圆O上,
延长ED交AB的延长线于点F,过点O作OI⊥AB,过点E作EJ⊥AB,EK⊥OI,
∵sin∠DCE=sin∠DCQ=,CD=3,
∴DE=DF=4,CE=CF=5,
∴EF=8,
∴△CEF的面积=EF×CD=CF×EJ,即×8×3=×5×EJ,
∴EJ=KI=,
∴CJ==,OK=OI﹣KI=﹣=3,
在Rt△OKE中,EK=JI=4,∴CI=,
∴AP=m=AC﹣CP=AI+CI﹣CP=10+﹣3=,
综上所述即可知m的取值范围是≤m≤,
故选:A.
【点评】本题考查了解直角三角形,直线与圆的位置关系,线段垂直平分线的定义,正确的作出辅助线是解题的关键.
5.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是( )
A. B. C. D.
【考点】解直角三角形;坐标与图形性质;三角形的面积.
【专题】几何综合题;几何直观;运算能力;推理能力.
【分析】如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.
【解答】解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,
∴点D的运动轨迹是以K为圆心,5为半径的圆,
∴当直线AD与⊙K相切时,△ABE的面积最小,
∵AD是切线,点D是切点,
∴AD⊥KD,
∵AK=13,DK=5,
∴AD=12,
∵tan∠EAO==,
∴=,
∴OE=,
∴AE==,
作EH⊥AB于H.
∵S△ABE=•AB•EH=S△AOB﹣S△AOE,
∴EH=,
∴AH==,
∴tan∠BAD===,
故选:B.
【点评】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
6.(2021秋•石狮市期末)如图,Rt△ABC中,∠BAC=90°,cosB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
A. B. C. D.3
【考点】解直角三角形;等腰三角形的性质;直角三角形斜边上的中线;相似三角形的判定与性质.
【专题】图形的相似;解直角三角形及其应用;运算能力.
【分析】设DE与AC交于点F,利用直角三角形斜边上的中线等于斜边长的一半,可得DA=DB,从而证明∠ADE=∠DAB,得到AB∥DE,,进而得到DE是AC的垂直平分线,然后可得ED=EC,最后证明△DCE∽△BAD,利用相似三角形的性质即可解答.
【解答】解:设DE与AC交于点F,
∵∠BAC=90°,点D是边BC的中点,
∴AD=BD=DC=BC,
∵DA=DB,
∴∠B=∠DAB,
∵∠ADE=∠B,
∴∠ADE=∠DAB,
∴AB∥DE,
∴∠BAC=∠DFC=90°,
∵DA=DC,
∴DE是AC的垂直平分线,
∴EA=EC,
∵EA=ED,
∴ED=EC,
∴∠EDC=∠ECD,
∵AB∥DE,
∴∠B=∠EDC,
∴∠DAB=∠ECD,
∴△DCE∽△BAD,
∴=,
∵∠BAC=90°,cosB==,
∴=3,
∴=3,
故选:D.
【点评】本题考查了等腰三角形的性质,相似三角形的判定与性质,直角三角形斜边上的中线,直角三角形斜边上的中线,熟练掌握相似三角形的判定与性质是解题的关键.
7.(2021秋•曾都区期末)构建几何图形解决代数问题是“数形结合”思想的重要应用.我们已经知道30°,45°,60°角的三角函数值,现在来求tan22.5°的值:
如图,在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°.设AC=1,则BC=1,AB==BD,所以tan22.5°====﹣1.类比这种方法,计算tan15°的值为( )
A.﹣ B.2﹣ C.+ D.﹣2
【考点】解直角三角形;实数的运算;平方差公式;等腰直角三角形.
【专题】计算题;解直角三角形及其应用;应用意识.
【分析】仿照题例作等腰三角形,利用直角三角形的边角间关系计算得结论.
【解答】解:如图,在Rt△ACB中,∠C=90°,∠ABC=30°,
延长CB使BD=AB,连接AD,得∠D=15°.
设AC=1,
则BA=BD=2,BC=.
∴CD=BC+BD=2+.
在Rt△ACD中,
tan15°=tanD===2.
故选:B.
【点评】本题考查了解直角三角形,看懂题例,仿照题例作出辅助线是解决本题的关键.
8.(2021•呼和浩特)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,下面d及π的值都正确的是( )
A.d=,π≈8sin22.5°
B.d=,π≈4sin22.5°
C.d=,π≈8sin22.5°
D.d=,π≈4sin22.5°
【考点】解直角三角形的应用;数学常识;正方形的性质;正多边形和圆.
【专题】正多边形与圆;运算能力.
【分析】根据外接圆的性质可知,圆心到各个顶点的距离相等,过圆心向边作垂线,解直角三角形,再根据圆周长公式可求得.
【解答】解:如图,连接AD,BC交于点O,过点O作OP⊥BC于点P,
则CP=PD,且∠COP=22.5°,
设正八边形的边长为a,则a+2×a=4,
解得a=4(﹣1),
在Rt△OCP中,OC==,
∴d=2OC=,
由πd≈8CD,
则π≈32(﹣1),
∴π≈8sin22.5°.
故选:C.
【点评】本题主要考查正多边形的外接圆的性质,解直角三角形等内容,熟练掌握三角函数的定义及正多边形外接圆的性质是解题关键.
9.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,cosB=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )
A. B. C. D.2
【考点】解直角三角形;等腰三角形的判定与性质;直角三角形斜边上的中线.
【专题】解直角三角形及其应用;推理能力.
【分析】设DE交AC于T,过点E作EH⊥CD于H.首先证明EA=ED=EC,再证明∠B=∠ECD,可得结论。
【解答】解:设DE交AC于T,过点E作EH⊥CD于H.
∵∠BAC=90°,BD=DC,
∴AD=DB=DC,
∴∠B=∠DAB,
∵∠B=∠ADE,
∴∠DAB=∠ADE,
∴AB∥DE,
∴∠DTC=∠BAC=90°,
∵DT∥AB,BD=DC,
∴AT=TC,
∴EA=EC=ED,
∴∠EDC=∠ECD,
∵EH⊥CD,
∴CH=DH,
∵DE∥AB,
∴∠EDC=∠B,
∴∠ECD=∠B,
∴cos∠ECH=cosB=,
∴=,
∴==2,
故选:D.
【点评】本题考查解直角三角形,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是证明EA=EC=ED,属于中考常考题型。
10.(2021•宽城区一模)我国魏晋时期的数学家刘徽首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率π≈3.14.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形…割的越细,圆的内接正多边形就越接近圆.设圆的半径为R,圆内接正六边形的周长p6=6R,计算.下面计算圆内接正十二边形的周长正确的是( )
A.p12=24Rsin30° B.p12=24Rcos30°
C.p12=24Rsin15° D.p12=24Rcos15°
【考点】解直角三角形的应用;数学常识;规律型:图形的变化类;正多边形和圆.
【专题】应用题;解直角三角形及其应用;运算能力;推理能力.
【分析】求出正多边形的中心角,利用三角形周长公式求解即可.
【解答】解:∵十二边形A1A2…A12是正十二边形,
∴∠A6OA7=30°.
∵OM⊥A1A2于M,又OA6=OA7,
∴∠A6OM=15°,
∵正n边形的周长=n•2R•sin,
∴圆内接正十二边形的周长P12=24Rsin15°,
故选:C.
【点评】本题考查解直角三角形的应用,正多边形与圆等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
考点卡片
1.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
2.实数的运算
(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
另外,有理数的运算律在实数范围内仍然适用.
【规律方法】实数运算的“三个关键”
1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.
2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.
3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.
3.规律型:图形的变化类
图形的变化类的规律题
首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
4.平方差公式
(1)平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.
(a+b)(a﹣b)=a2﹣b2
(2)应用平方差公式计算时,应注意以下几个问题:
①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;
②右边是相同项的平方减去相反项的平方;
③公式中的a和b可以是具体数,也可以是单项式或多项式;
④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.
5.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
6.三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
7.线段垂直平分线的性质
(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
(2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
8.等腰三角形的性质
(1)等腰三角形的概念
有两条边相等的三角形叫做等腰三角形.
(2)等腰三角形的性质
①等腰三角形的两腰相等
②等腰三角形的两个底角相等.【简称:等边对等角】
③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
9.等腰三角形的判定与性质
1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.
3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.
10.直角三角形斜边上的中线
(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)
(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
该定理可以用来判定直角三角形.
11.勾股定理的证明
(1)勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.
(2)证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.
12.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
13.正方形的性质
(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(2)正方形的性质
①正方形的四条边都相等,四个角都是直角;
②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
14.直线与圆的位置关系
(1)直线和圆的三种位置关系:
①相离:一条直线和圆没有公共点.
②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.
③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.
(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.
①直线l和⊙O相交⇔d<r
②直线l和⊙O相切⇔d=r
③直线l和⊙O相离⇔d>r.
15.正多边形和圆
(1)正多边形与圆的关系
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
(2)正多边形的有关概念
①中心:正多边形的外接圆的圆心叫做正多边形的中心.
②正多边形的半径:外接圆的半径叫做正多边形的半径.
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
16.相似三角形的判定与性质
(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.
17.解直角三角形
(1)解直角三角形的定义
在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
(2)解直角三角形要用到的关系
①锐角、直角之间的关系:∠A+∠B=90°;
②三边之间的关系:a2+b2=c2;
③边角之间的关系:
sinA==,cosA==,tanA==.
(a,b,c分别是∠A、∠B、∠C的对边)
18.解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
2022年中考数学复习之挑战压轴题(选择题):圆(含答案): 这是一份2022年中考数学复习之挑战压轴题(选择题):圆(含答案),共28页。
2022年中考数学复习之挑战压轴题(选择题):一次函数(含答案): 这是一份2022年中考数学复习之挑战压轴题(选择题):一次函数(含答案),共26页。试卷主要包含了小时等内容,欢迎下载使用。
2022年中考数学复习之挑战压轴题(选择题):图像的平移、折叠、旋转(含答案): 这是一份2022年中考数学复习之挑战压轴题(选择题):图像的平移、折叠、旋转(含答案),共25页。