所属成套资源:中考数学压轴题训练
压轴专题19动点问题与几何图形综合题型16题8页
展开
这是一份压轴专题19动点问题与几何图形综合题型16题8页,共9页。试卷主要包含了动点问题与几何图形最值问题,动点问题与几何问题相结合等内容,欢迎下载使用。
专题19 动点问题与几何图形综合题型题型一、动点问题与几何图形最值问题主要有:线段最值;点到直线距离的最值;周长最值;面积最值等等.题型二、动点问题与几何问题相结合主要有:相似三角形的存在性;角平分线存在性;角度间的关系问题;面积关系问题等等.1.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为( ).A.4 B.2 C.7 D.8 2.如图,△ABC 是等边三角形,AB=3,E 在 AC 上且 AE=AC,D 是直线 BC上一动点,线段 ED 绕点 E 逆时针旋转 90°,得到线段 EF,当点 D 运动时, 则线段 AF 的最小值是 . 3.如图1,在平面直角坐标系中,直线y=x﹣4与抛物线y=x2+bx+c交于坐标轴上两点A、C,抛物线与x轴另一交点为点B;(1)求抛物线解析式;(2)若动点D在直线AC下方的抛物线上,如图2,作DM⊥直线AC,垂足为点M,是否存在点D,使△CDM中某个角恰好是∠ACO的一半?若存在,直接写出点D的横坐标;若不存在,说明理由.图1 图2 4.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由. 5.如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B;抛物线(a≠0)过A,B两点,与x轴交于另一点C(-1,0),抛物线的顶点为D.(1)求抛物线的解析式;(2)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;(3)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线 BD,DF的距离相等,请直接写出点P的坐标. 图1 图2 6.如图,抛物线y=ax2+5x+c交 x 轴于 A,B 两点,交 y 轴于点 C.直线y=x-4经过点B,C. 点P是直线 BC 上方抛物线上一动点,直线 PC 交 x 轴于点 D.(1)直接写出 a,c 的值;(2)当△PBD 的面积等于△BDC 面积的一半时,求点 P 的坐标;(3)当∠PBA= ∠CBP 时,直接写出直线 BP 的解析式. 7.在平面直角坐标系中,直线y=x-2与x轴交于点 B,与 y 轴交于点 C,二次函数y=x2+bx+c的图象经过 B,C 两点,且与 x 轴的负半轴交于点A.(1)求二次函数的解析式;(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点 D 的横坐标为 m.过点 D 作 DM⊥BC 于点 M,求线段 DM 关于 m 的函数关系式,并求线段 DM 的最大值; 8.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求这个抛物线的解析式;(2)若D(2,m)在该抛物线上,连接CD,DB,求四边形OCDB的面积;(3)设E是该抛物线上位于对称轴右侧的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点E作EH⊥x轴于点H,再过点F作FG⊥x轴于点G,得到矩形EFGH.在点E的运动过程中,当矩形EFGH为正方形时,直接写出该正方形的边长. 9.如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的动点,当S△PAB=2S△AOB时,求点P的坐标. 10.如图.在平面直角坐标系中.抛物线y=x2+bx+c与x轴交于A两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣2).已知点E(m,0)是线段AB上的动点(点E不与点A,B重合).过点E作PE⊥x轴交抛物线于点P.交BC于点F.(1)求该抛物线的表达式;(2)当线段EF,PF的长度比为1:2时,请求出m的值;(3)是否存在这样的m,使得△BEP与△ABC相似?若存在,求出此时m的值;若不存在,请说明理由. 11.如图,抛物线y=ax2+bx+2与直线y=﹣x交第二象限于点E,与x轴交于A(﹣3,0),B两点,与y轴交于点C,EC∥x轴.(1)求抛物线的解析式;(2)点P是直线y=﹣x上方抛物线上的一个动点,过点P作x轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值. 12.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA? 13.如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标. 14.如图,二次函数 y=x2+bx+c 的图象与 x 轴交于 A,B 两点,与 y 轴交于点 C,OB=OC.点 D 在函数图象上,CD∥x 轴,且 CD=2,直线 l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b,c的值.(2)如图 1,连接 BE,线段 OC 上的点 F 关于直线 l 的对称点 F′恰好在线段 BE 上,求点 F 的坐标.(3)如图 2,动点 P 在线段 OB 上,过点 P 作 x 轴的垂线分别与 BC 交于点M,与抛物线交于点 N.试问:抛物线上是否存在点 Q,使得△PQN 与△APM 的面积相等,且线段 NQ 的长度最小?如果存在,求出点 Q 的坐标;如果不存在,说明理由.图1 图2 15.如图,抛物线y=-x2+bx+c和直线y=x+1交于A、B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式.(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上. 16.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是
相关试卷
这是一份专题16 二次函数与动点综合问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用),文件包含专题16二次函数与动点综合问题-挑战中考数学压轴题之学霸秘笈大揭秘全国通用解析版docx、专题16二次函数与动点综合问题-挑战中考数学压轴题之学霸秘笈大揭秘全国通用原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份挑战2023年中考数学压轴题专题16 二次函数与动点综合问题(含答案解析),共84页。
这是一份压轴专题19动点问题与几何图形综合题型答案解析,共34页。试卷主要包含了动点问题与几何图形最值问题,动点问题与几何问题相结合等内容,欢迎下载使用。