![清单27 直线、平面平行及垂直的判定与性质(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练第1页](http://m.enxinlong.com/img-preview/3/3/12896474/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![清单27 直线、平面平行及垂直的判定与性质(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练第2页](http://m.enxinlong.com/img-preview/3/3/12896474/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![清单27 直线、平面平行及垂直的判定与性质(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练第3页](http://m.enxinlong.com/img-preview/3/3/12896474/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
清单27 直线、平面平行及垂直的判定与性质(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练
展开
这是一份清单27 直线、平面平行及垂直的判定与性质(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共39页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
清单27 直线、平面平行及垂直的判定与性质
一、知识与方法清单
1.空间中直线与平面之间的位置关系
(1)直线在平面内,则它们有无数个公共点.
(2)直线与平面相交,则它们有1个公共点.
(3)直线与平面平行,则它们没有公共点.
直线与平面相交或平行的情况统称为直线在平面外.
【对点训练1】给出以下命题(其中a,b表示不同的直线,α表示平面):
①若a∥α,b∥α,则a∥b;
②若a∥b,b∥α,则a∥α;
③若a∥α,b⊂α,则a∥b;
④若α的同侧有两点A,B到平面α的距离相等,则AB∥α.
其中正确命题的个数是 ( )
A.0 B.1 C.2 D.3
【答案】B
【解析】如图,在长方体ABCDA′B′C′D′中,
A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故①错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故②错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故③错误;④显然正确.故选B.
2.直线与平面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定定理
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)
l∥α,a⊂β,α∩β=b ⇒l∥α
性质定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)
l∥α,l⊂β,α∩β=b⇒l∥b
【对点训练2】如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
证明 (1)连接EC,
∵AD∥BC,BC=AD,
∴BCAE,
∴四边形ABCE是平行四边形,
∴O为AC的中点.
又F是PC的中点,∴FO∥AP,
又FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.
(2)连接FH,OH,∵F,H分别是PC,CD的中点,
∴FH∥PD,又PD⊂平面PAD,FH⊄平面PAD,
∴FH∥平面PAD.
又O是BE的中点,H是CD的中点,
∴OH∥AD,又AD⊂平面PAD,OH⊄平面PAD,
∴OH∥平面PAD.
又FH∩OH=H,∴平面OHF∥平面PAD.
又GH⊂平面OHF,∴GH∥平面PAD.
3.平面与平面之间的位置关系
(1)两个平面平行,则它们没有公共点.
(2)两个平面相交,则它们有一条公共直线,两个平面垂直是相交的一种特殊情况.
【对点训练3】如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是( )
A.垂直 B.相交不垂直
C.平行 D.重合
【答案】C
【解析】如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.
4.平面与平面平行的判定和性质
文字语言
图形语言
符号语言
判定定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)
a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥⇒α∥β
性质定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
α∥β,α∩γ=a,β∩γ=b⇒a∥b
【对点训练4】如图所示的四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是____________.(写出所有符合要求的图形序号)
① ②
③ ④
【答案】①③
【解析】在①中,由于平面MNP与AB所在的侧面平行,所以AB∥平面MNP;在③中,由于AB与以MP为中位线的三角形的底边平行,所以AB∥MP,又因为MP⊂平面MNP,AB⊄平面MNP.所以AB∥平面MNP.②④中,只需平移AB,即可发现AB与平面MNP相交.故填①③.
5.证明平行时常用的其他性质
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
【对点训练5】已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是 ( )
A.若m⊥α,m⊥β,则α∥β
B.若α∥γ,β∥γ,则α∥β
C.若m⊂α,n⊂β,m∥n,则α∥β
D.若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β
【答案】
【解析】由线面垂直的性质可知A正确;由面面平行的性质可知B正确;m⊂α,n⊂β,m∥n⇒α,β可能平行,也可能相交.故C错误;由线面平行的性质和面面平行的判定定理可知D正确.故选C.
6.判断或证明线面平行的常用方法
(1)利用线面平行的定义(无公共点).
(2)利用线面平行的判定定理(aα,b⊂α,a∥b⇒a∥α).
(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).
(4)利用面面平行的性质(α∥β,aα,aβ,a∥α⇒a∥β).
【对点训练6】在如图所示的空间几何体中,AC⊥BC,四边形DCBE为矩形,点F,M分别为AB,CD的中点.求证:
(1)FM∥平面ADE;
(2)平面ACD⊥平面ADE.
证明:(1)取BE的中点N,连接MN,FN,因为F,M,N分别为AB,CD,BE的中点,所以MN∥DE,FN∥AE.
又因为AE,DE⊂平面ADE,FN,MN⊄平面ADE,
所以MN∥平面ADE,FN∥平面ADE.
又MN∩FN=N,所以平面ADE∥平面FMN.
又FM⊂平面FMN,所以FM∥平面ADE.
(2)因为四边形DCBE为矩形,所以BC⊥DC.
又AC⊥BC,AC∩DC=C,所以BC⊥平面ACD.
又因为BC∥DE,所以DE⊥平面ACD.
因为DE⊂平面ADE,所以平面ACD⊥平面ADE.
7.证明面面平行的方法
(1)面面平行的定义.
(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(3)利用垂直于同一条直线的两个平面平行.
(4)两个平面同时平行于第三个平面,那么这两个平面平行.
(5)利用“线线平行”“线面平行”“面面平行”的相互转化.
【对点训练7】已知四棱锥SABCD的各条棱长都相等,且点E、F分别是SB、SD的中点.
(1)求证:AC⊥SB;
(2)在SC上是否存在点M,使平面MBD∥平面AEF?若存在,求出的值;若不存在,说明理由.
解:(1)证明:设AC∩BD=O,则O为底面正方形ABCD的中心,连接SO,
因为SABCD为正四棱锥,
所以SO⊥平面ABCD,所以SO⊥AC.
又BD⊥AC,且SO∩BD=O,所以AC⊥平面SBD.
因为SB⊂平面SBD,故AC⊥SB.
(2)存在点M,设SO∩EF=G,则G是SO的中点,连接AG,并延长AG交SC于点N.
过点O作AN的平行线,与SC的交点即为M.
所以OM∥AN,即OM∥AG,
又EF∥BD,OM,BD⊄平面AEF,AG,EF⊂平面AEF,
所以OM∥平面AEF,BD∥平面AEF,
又OM∩BD=O,
所以平面MBD∥平面AEF.
在△SOM中,GN∥OM,因为G是OS的中点,则N是SM中点.同理,M是CN中点,所以=2.
8.证明线面或面面平行时要转化为证明线性平行,在几何体中证明线性平行常要用到平面几何知识,如三角形的中位线与第3边平行,若四边形的一组对边平行且相等,则另一组对边平行等。
【对点训练8】如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体N-BCM的体积.
(1)证明 由已知得AM=AD=2.
如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綊AM,
所以四边形AMNT为平行四边形,
于是MN∥AT.
因为AT⊂平面PAB,MN⊄平面PAB,
所以MN∥平面PAB.
(2)解 因为PA⊥平面ABCD,N为PC的中点,
所以N到平面ABCD的距离为PA.
取BC的中点E,连接AE.
由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距离为,
故S△BCM=×4×=2.
所以四面体N-BCM的体积
V四面体N-BCM=×S△BCM×=.
9.利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.
【对点训练9】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
(1)证明 ∵四边形EFGH为平行四边形,
∴EF∥HG.
∵HG⊂平面ABD,EF⊄平面ABD,
∴EF∥平面ABD.
又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,
∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,
∴AB∥平面EFGH.同理可证,CD∥平面EFGH.
(2)解 设EF=x(0
相关试卷
这是一份清单32 双曲线(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共31页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
这是一份清单31 椭圆(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共28页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
这是一份清单29 直线与方程及两直线的位置关系(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练,共9页。试卷主要包含了知识与方法清单,跟踪检测,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)