终身会员
搜索
    上传资料 赚现金

    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(原卷版).docx
    • 练习
      【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析).docx
    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(原卷版)第1页
    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(原卷版)第2页
    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析)第1页
    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析)第2页
    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析)第3页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析)

    展开

    这是一份【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数大题(精解精析),文件包含2022高考必备2012-2021十年全国高考数学真题分类汇编文科导数大题精解精析docx、2022高考必备2012-2021十年全国高考数学真题分类汇编文科导数大题原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
    2012-2021十年全国高考数学真题分类汇编 (文科)
    导数大题(精解精析)
    1.(2021年高考全国甲卷文科)设函数,其中.
    (1)讨论的单调性;
    (2)若的图像与轴没有公共点,求a的取值范围.
    【答案】(1)的减区间为,增区间为;(2).
    解析:(1)函数定义域为,
    又,
    因为,故,
    当时,;当时,;
    所以的减区间为,增区间为.
    (2)因为且的图与轴没有公共点,
    所以的图象在轴的上方,
    由(1)中函数的单调性可得,
    故即
    【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.
    2.(2021年全国高考乙卷文科)已知函数.
    (1)讨论的单调性;
    (2)求曲线过坐标原点的切线与曲线的公共点的坐标.
    【答案】(1)答案见解析;(2).
    解析:(1)由函数的解析式可得:,
    导函数的判别式,
    当时,在R上单调递增,
    当时,的解为:,
    当时,单调递增;
    当时,单调递减;
    当时,单调递增;
    综上可得:当时,在R上单调递增,
    当时,在上单调递增,在上单调递减,在上单调递增.
    (2)由题意可得:,,
    则切线方程为:,
    切线过坐标原点,则:,
    整理可得:,即:,
    解得:,则,
    即曲线过坐标原点的切线与曲线的公共点的坐标为.
    【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
    3.(2020年高考数学课标Ⅰ卷文科)已知函数.
    (1)当时,讨论的单调性;
    (2)若有两个零点,求的取值范围.
    【答案】(1)的减区间为,增区间为;(2).
    【解析】(1)当时,,,
    令,解得,令,解得,
    所以的减区间为,增区间为;
    (2)若有两个零点,即有两个解,
    从方程可知,不成立,即有两个解,
    令,则有,
    令,解得,令,解得或,
    所以函数在和上单调递减,在上单调递增,
    且当时,,
    而时,,当时,,
    所以当有两个解时,有,
    所以满足条件的的取值范围是:.
    【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线和直线有两个交点,利用过点的曲线的切线斜率,结合图形求得结果.
    4.(2020年高考数学课标Ⅱ卷文科)已知函数f(x)=2lnx+1.
    (1)若f(x)≤2x+c,求c的取值范围;
    (2)设a>0时,讨论函数g(x)=单调性.
    【答案】(1);(2)在区间和上单调递减,没有递增区间
    【解析】(1)函数的定义域为:

    设,则有,
    当时,单调递减,
    当时,单调递增,
    所以当时,函数有最大值,
    即,
    要想不等式在上恒成立,
    只需;
    (2)且
    因此,设,
    则有,
    当时,,所以,单调递减,因此有,即
    ,所以单调递减;
    当时,,所以,单调递增,因此有,即,所以单调递减,
    所以函数在区间和上单调递减,没有递增区间.
    【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.
    5.(2020年高考数学课标Ⅲ卷文科)已知函数.
    (1)讨论的单调性;
    (2)若有三个零点,求取值范围.
    【答案】(1)详见解析;(2).
    【解析】(1)由题,,
    当时,恒成立,所以在上单调递增;
    当时,令,得,令,得,
    令,得或,所以在上单调递减,在
    ,上单调递增.
    (2)由(1)知,有三个零点,则,且
    即,解得,
    当时,,且,
    所以在上有唯一一个零点,
    同理,,
    所以在上有唯一一个零点,
    又在上有唯一一个零点,所以有三个零点,
    综上可知的取值范围为.
    【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.
    6.(2019年高考数学课标Ⅲ卷文科)已知.
    (1)讨论的单调性;
    (2)当时,记在区间的最大值为M,最小值为m,求的取值范围.
    【答案】:(1),
    令,得或.
    若,则当,时,;当时,.
    故在,上单调递增,在上单调递减;
    若,在上单调递增;
    若,则当,,时,;当,时,.
    故在,上单调递增,在,上单调递减;
    (2)当时,由(1)知,在上单调递减,在,上单调递增,
    在区间,的最小值为,最大值为或(1).
    于是,,.

    当时,可知单调递减,的取值范围是;
    当时,单调递增,的取值范围是,.
    综上,的取值范围,.
    7.(2019年高考数学课标Ⅱ卷文科)已知函数.证明:
    (1)存在唯一的极值点;
    (2)有且仅有两个实根,且两个实根互为倒数.
    【答案】解:(1)的定义域为..
    因为单调递增,单调递减,所以单调递增,又,
    ,故存在唯一,使得.
    又当时,,单调递减;当时,,单调递增.
    因此,存在唯一的极值点.
    (2)由(1)知,又,
    所以在内存在唯一根.
    由得.
    又,故是在的唯一根.
    综上,有且仅有两个实根,且两个实根互为倒数.
    8.(2019年高考数学课标Ⅰ卷文科)已知函数,为的导数.
    (1)证明:在区间存在唯一零点;
    (2)若,时,,求的取值范围.
    【答案】(1)设,则.当时,;
    当时,,所以在单调递增,在单调递减.
    又,故在存在唯一零点.所以在存在唯一零点.
    (2)由题设知,可得a≤0.由(1)知,在只有一个零点,
    设为,且当时,;
    当时,,所以在单调递增,在单调递减.
    又,所以,当时,.
    又当时,ax≤0,故.因此,a的取值范围是.
    9.(2018年高考数学课标Ⅲ卷文科)(12分)已知函数.
    (1)求由线在点处的切线方程;
    (2)证明:当时,.
    【答案】【官方解析】(1),.
    因此曲线在处的切线方程是.
    (2)当时,.
    令,则.
    当时,,单调递减;当时,,单调递增;
    所以.
    因此.
    10.(2018年高考数学课标Ⅱ卷文科)(12分)已知函数.
    (1)若,求的单调区间;
    (2)证明:只有一个零点.
    【答案】解析:(1)当时,,.
    令,解得或.
    当时,;
    当时,.
    故在,单调递增,在单调递减.
    (2)由于,所以等价于.
    设,则,仅当时,所以在单调递增.故至多有一个零点,从而至多有一个零点.
    又,,故有一个零点.
    综上,只有一个零点.
    11.(2018年高考数学课标Ⅰ卷文科)(12分)已知函数.
    (1)设是的极值点,求,并求的单调区间;
    (2)证明:当时,.
    【答案】解:(1)的定义域为,.由题设知,,所以.
    从而,. 当时,;当时,.
    所以在单调递减,在单调递增.
    (2)当时,.设,则.
    当时,;当时,. 所以是的最小值点.
    故当时,. 因此,当时,.
    12.(2017年高考数学课标Ⅲ卷文科)已知函数.
    (1)讨论的单调性;
    (2)当时,证明.
    【答案】(1)当时,在上单调递增;当时,在单调递增,在单调递减.
    (2)证明略,详见解析.
    解析:(1)函数的定义域为

    所以当时,恒成立,所以在单调递增
    当时,由,由
    所以在单调递增,在单调递减.
    (2)由(1)知,当时,

    令,,则
    当时,,当时,
    ∴在单调递增,在单调递减

    ∴,即
    ∴.
    【考点】利用导数求单调性,利用导数证不等式
    【点评】利用导数证明不等式常见类型及解题策略
    (1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.
    13.(2017年高考数学课标Ⅱ卷文科)(12 分)设函数.
    (1)讨论的单调性;
    (2)当时,,求 的取值范围.
    【答案】(Ⅰ)在 和单调递减,
    在单调递增(Ⅱ)
    【试题分析:】(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间
    (2)对分类讨论,当a≥1时,,满足条件;当时,取,当0

    相关试卷

    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 数列大题(精解精析):

    这是一份【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 数列大题(精解精析),文件包含2022高考必备2012-2021十年全国高考数学真题分类汇编文科数列大题精解精析docx、2022高考必备2012-2021十年全国高考数学真题分类汇编文科数列大题原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 立体几何大题(精解精析):

    这是一份【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 立体几何大题(精解精析),文件包含2022高考必备2012-2021十年全国高考数学真题分类汇编文科立体几何大题精解精析docx、2022高考必备2012-2021十年全国高考数学真题分类汇编文科立体几何大题原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数小题(精解精析):

    这是一份【2022高考必备】2012-2021十年全国高考数学真题分类汇编(文科) 导数小题(精解精析),文件包含2022高考必备2012-2021十年全国高考数学真题分类汇编文科导数小题精解精析docx、2022高考必备2012-2021十年全国高考数学真题分类汇编文科导数小题原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map