所属成套资源:(全国通用)备战2022年中考数学一轮复习专题讲义+强化训练解析+原卷
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(强化训练)
展开这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十二讲相似三角形强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十二讲相似三角形强化训练原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
备战2022年中考数学一轮复习专题讲义+强化训练(全国通用)
第二十二讲 相似三角形
考点一 平行线分线段成比例定理
考点二 相似三角形的性质与判定
考点三 相似三角形的应用
考点四 图形的位似
考点一 平行线分线段成比例定理
1.如图,若AB∥CD∥EF,则下列线段的比中,与相等的是( )
A. B. C. D.
2.如图△ACB,∠ACB=90°,点O是AB的中点,CD平分∠BCO交AB于点D,作AE⊥CD分别交CO、BC于点G,E.记△AGO的面积为S1,△AEB的面积为S2,当=时,则的值是( )
A. B. C. D.
3.如图,在△ABC中,D、E分别为BC,AB中点,F在AC上且AF=2FC,AD与EF交于点G,则=( )
A.3:7 B.4:9 C.5:11 D.6:13
4.如图,平行四边形ABCD中,E为BC的中点,BF=AF,BD与EF交于G,则BG:BD=( )
A.1:5 B.2:3 C.2:5 D.1:4
5.如图,△ABC中,D、E是BC边上的点,且BD:DE:EC=3:2:1,P是AC边上的点,且AP:PC=2:1,BP分别交AD、AE于M、N,则BM:MN:NP等于( )
A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10
考点二 相似三角形的性质与判定
6.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:=;
(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论.
7.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD交于点O.动点P从点B出发沿BC方向,以每秒1个单位长度的速度向点C匀速运动,同时动点Q从点C出发沿CD方向,以每秒1个单位长度的速度向点D匀速运动,当其中一个点到达终点后即都停止运动,过点Q作QM∥AC交AD于点M,连接PM,PQ.设点P的运动时间为t秒,四边形APQM的面积为S.(0<t<6)
(1)求S与t之间的函数关系式;
(2)在运动过程中是否存在某一时刻t,使S四边形APQM:S矩形ABCD=51:96,若存在,求出t的值;若不存在,说明理由.
8.已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.
(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F.证明:△PME∽△PNF,PN=PM.
(2)当PC=PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请分别写出线段PN、PM之间的数量关系(不用证明).
9.如图1,ABCD是边长为1的正方形,O是正方形的中心,Q是边CD上一个动点(点Q不与点C、D重合),直线AQ与BC的延长线交于点E,AE交BD于点P.设DQ=x.
(1)填空:当时,的值为 ;
(2)如图2,直线EO交AB于点G,若BG=y,求y关于x之间的函数关系式;
(3)在第(2)小题的条件下,是否存在点Q,使得PG∥BC?若存在,求x的值;若不存在,说明理由.
10.已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
考点三 相似三角形的应用
11.某数学兴趣小组在测量学校旗杆的高度时,让一名同学直立在点F处,手拿一块直角三角板CDE,保持斜边CE与地面BF平行,延长CE交AB于点G,如图,并沿着射线CD的方向观察,刚好看到旗杆的顶端A点,已知该同学的身高CF为1.6米,点F到旗杆底端的距离BF为12米,CE=50cm,CD=40cm,求旗杆AB的高度.
12.揽月阁是西安唐文化轴的南部重要节点和标志性建筑,与唐大雁塔今古一线、遥相呼应,联袂彰显西安具有历史文化特色的现代化国际大都市风貌.一天下午,小明和小丽来到了揽月阁广场,他们想用所学的知识,测量揽月阁的高度.如图,点A为揽月阁的顶部,点B为揽月阁的底部,小明在点C处放一水平的平面镜,然后沿着BC方向向前走0.5米,到达点D处,这时小明蹲下,恰好在镜子里看到揽月阁的顶端A的像.接下来小明不动,小丽在C处竖起一根可调节高度的测量杆,并调节测量杆的高度,使得测量杆的顶端P、揽月阁的顶端A、小明的眼睛E在一条直线上,此时测得测量杆的高度CF=1.98米.已知小明蹲下时,眼睛到地面的距离DE=1米,点B、C、D在一条直线上,AB⊥BD,CF⊥BD,DE⊥BD,求揽月阁的高度AB.(平面镜的大小忽略不计)
13.学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶点E、杆顶点A、楼顶点C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆”AB=2.5米,又BD=23米,FB=2米.
(1)求大楼的高度CD为多少米(CD垂直地面BD)?
(2)小明站在原来的位置,同学们通过移动标杆,可以用同样的方法测得楼CD上点G的高度GD=11.5米,那么相对于第一次测量,标杆AB应该向大楼方向移动多少米?
考点四 图形的位似
14.如图,直线y=x+1与x轴,y轴分别交于A、B两点,△B′O′C′与△BOC是以点A为位似中心的位似图形,且相似比为2:1,则点B′的坐标为 .
15.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,将△AOB放大2倍,则点B的对应点B'的坐标为 .
16.如图,已知△DEF与△ABC位似,位似中心为点O,且△DEF与△ABC面积之比为5:2,则的值为 .
17.如田,△ABC与△A′B′C′是位似图形,O为位似中心,若△ABC与△A′B′C′的面积之比为1:4,则CO:C′O的值为 .
相关试卷
这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第六讲 分式方程(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第六讲分式方程强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第六讲分式方程强化训练原卷版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十七讲 尺规作图(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十七讲尺规作图强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十七讲尺规作图强化训练原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。