第十讲:简单机械和功学案
展开
这是一份第十讲:简单机械和功学案,共9页。学案主要包含了滑轮,机械效率等内容,欢迎下载使用。
一、滑轮
1、定滑轮
1.滑轮,周边有_槽__,能绕_固定转轴__转动的轮子,是一种变形的_杠杆__。
2.定滑轮
(1)特点1:使用时既不省力,也不费力,但能改变_力的方向__。
特点2:
(2)实质:是一个_等臂__杠杆,其支点在轴上,力臂等于半径。
(3)对理想的定滑轮(不计轮轴间摩擦)F=G,绳子自由端移动距离sF(或速度vF)=重物移动的距离sG(或速度vG)。
2、动滑轮
1.动滑轮
(1)特点1:
(2)特点2:使用动滑轮可以_省__一半力(不计摩擦和动滑轮重),但不能改变力的方向。
2.实质:动力臂为阻力臂2倍的杠杆,其支点在动滑轮边缘与悬绳相切的一点。动力臂和阻力臂分别等于轮的_直径__和_半径__。
3.理想的动滑轮(不计轮轴间摩擦和动滑轮重力),F=eq \f(1,2)G。只忽略轮轴间的摩擦,则拉力F=eq \f(1,2)(G物+G动),绳子自由端移动的距离sF(或速度vF)=2倍的重物移动的距离sG(或速度vG)。
滑轮组
1.滑轮组的构成:滑轮组是由_动滑轮__和_定滑轮__组合而成的。
2.滑轮组的优点:使用滑轮组既可以__省力__,同时也可以__改变力的方向__。
3.理想的滑轮组(不计轮轴间摩擦和动滑轮重力),拉力F=eq \f(1,n)G。只忽略轮轴间的摩擦,拉力F=eq \f(1,n)(G物+G动),绳子自由端移动的距离sF(或速度vF)=n倍的重物移动的距离sG(或速度vG)。
杠杆
杠杆:在力的作用下能绕固定点的硬棒叫做杠杆。
杠杆的五要素
支点:使杠杆绕着转动的固定点。
动力:使杠杆转动的力。
阻力:阻碍杠杆转动的力
动力臂:从支点到动力作用线的垂直距离。
阻力臂:从支点到阻力作用线的垂直距离。
杠杆平衡:指杠杆保持静止状态或匀速转动状态
4、杠杆平衡原理:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2
杠杆的分类
L1>L2时,叫省力杠杆,其特点是省了力但费了距离。如开瓶盖的起子、铡刀、老虎钳、道钉撬等。
L1<L2时,叫费力杠杆,其特点是费了力但省了距离。如钓鱼杆、筷子、镊子、缝纫机脚踏板等。
L1=L2时,叫等臂杠杆,其特点是不省力也不费力,不省距离也不费距离。如天平、定滑轮等。
例题1 室内垃圾桶平时桶盖关闭,使垃圾散发的异味不会飘出,使用时用脚踩踏板,桶盖开启。根据室内垃圾桶的结构示意图可确定( )
A. 桶中只有一个杠杆在起作用,且为省力杠杆
B. 桶中只有一个杠杆在起作用,且为费力杠杆
C. 桶中有两个杠杆在起作用,且都是省力杠杆
D. 桶中有两个杠杆在起作用,一个是省力杠杆,一个是费力杠杆
【答案】 D
【考点】杠杆的分类
例题2 .如图所示为质量不计的杠杆,在左边用细线挂一个小球,为使杠杆保持在水平位置平衡,F1~F6为作用于不同位置时的拉力是( )
A. 拉力为F1时属于省力杠杆,F2时为等臂杠杆 B. 若使小球升高相同的距离,则F5比F2会向下移动更少距离
C. 最大拉力为F3 , 最小拉力为F5 , 而F2=F4=F6 D. 若从F4缓慢转至F5再转至F6(不改变力的作用点),则力F先变大后变小
【答案】 C
【考点】杠杆的平衡条件,杠杆的动态平衡分析,杠杆中最小力问题
例题3 如图所示,质量为2Kg的物体A放在水平桌面上,(不计绳重及绳与轮的摩擦)动滑轮重6N,滑轮下面悬挂一物体B,当物体B重8N时,恰能匀速下滑。用一个水平向左的拉力F作用在物体A,使物体A以1m/s的速度向左做匀速直线运动,时间为3s。下列说法正确的是( )
A. 拉力F的大小为8N B. 拉力F的功率是14W
C. 拉力F做的功是60J D. 物体A在F作用下向左运动时,滑轮B以1m/s的速度匀速上升
【答案】 B
【考点】二力平衡的条件及其应用,功率计算公式的应用,滑轮组及其工作特点
例题4 如图所示,用由一个动滑轮和两个定滑组成的滑轮组提升吊篮及其中的货物和电动机,启动电动机,它所提供的拉力F随时间t的变化关系如图乙所示,吊篮上升的速度v和上升的高度h随时间t变化的关系分别如图丙和丁所示。若一切摩擦和绳重均可忽略不计,在1s-2s内,滑轮组的机械效率为90%,则下列说法中正确的是( )
A. 在0-1s内,电动机提供的拉力所做的功为825J B. 在1s-2s内,电动机提供的拉力的功率为1500W
C. 在0-3s内,电动机提供的拉力的功率为1275W D. 动滑轮重为200N
【答案】 D
【考点】功的计算公式的应用,功率计算公式的应用,滑轮组及其工作特点,机械效率的计算
例题4 小柯用图中提升重为400牛的物体,不计摩擦和滑轮自重,下列说法正确的是( )
A. 两个滑轮均为定滑轮 B. 人将绳子拉过1米,物体也上升1米
C. 物体匀速上升时,人对绳子的拉力为200牛 D. 使用该装置不能省力,但能改变力的方向
【答案】 C
例题5 如图所示,质地均匀的圆柱体,重力为G0在推力的作用下,由实线位置匀速转到高为H的台阶虚线所示位置,OA为圆柱体横截面的直径。整个过程中,圆柱体在转动过程中不打滑。在A点施加一个力推动圆柱体,所用力最小的是________(选填“F1”“F2”“F3”)。缓慢推动圆柱体,保持推力始终重直OA,则推力的变化是________。
【答案】 F2;变小
【考点】杠杆的平衡条件,杠杆中最小力问题
二.功
功的两个必要因素:一个是作用在物体上的力,另一个是物体在力的方向上移动的距离。
功的计算公式:W=Fs=Pt 功的单位:焦
功率
功率是反映物体做功快慢的物理量。
功率的定义:单位时间里完成的功叫功率
功率的计算公式: P=W/t P=Fv
功率的单位:瓦 常用单位还有:千瓦、兆瓦
1千瓦=1000瓦 1兆瓦=106瓦
三、机械效率
(1)有用功:我们把必须要做的这部分功。
(2)额外功或无用功:不需要,但又不得不做的那部分功。
(3)总功:有用功与额外功的总和。
(4)机械效率:有用功跟总功的比值。η=W有用/W=Gh/FL×100﹪
(5)W总=W有用+W额外 W有用<W总 η<1
例题6 某同学在实验中将一直流电动机和电流表串联接到6V的直流电源上,闭合开关后,发现电动机不转,立即断开开关。为查出原因,他将电动机与一阻值为5Ω的电阻串联后接到原来的电源上,闭合开关后,电动机并没有转动,这时电流表读数为1A,检查发现电动机的轴被卡住了。排除故障后,将电动机重新接到6V的直流电源上带动负载转动,这时电流表读数也为1A,由此可知此时电动机做机械功的功率为________W,效率为________。
【答案】 5;83.3%
【考点】机械效率的计算,电功率计算公式的应用
例题7 一根金属棒AB置于水平地面上,今通过弹簧测力计竖直地将棒的右端B缓慢拉起,如图甲所示,在此过程中,弹簧测力计对棒所做的功W与B端离开地面的高度x的关系如图乙所示,请根据图象解答下列问题.
(1)该金属棒的长度l=________ m
(2)在B端拉起的过程中,当x1=0.6m时,测力计的示数为F1=________ N;当x2=1.6m时,测力计的示数F2=________ N
(3)求金属棒的重心到A端的距离d
例题8 如图所示是一种起重机的示意图.起重机重2.4×104N(包括悬臂),重心为P1 , 为使起重机起吊重物时不致倾倒,在其右侧配有重M(重心为P2).现测得AB为10m,BO为1m,BC为4m,CD为1.5m。(g取10N/kg)
(1)现在水平地面上有重为2.44×104N的货箱,它与地面的接触面积是3m2. 若要吊起此货箱,起重机至少需加多少牛的配重?
(2)有人认为起重机的配重越重越好,这样就能吊起更重的重物,这起重机能配8t的配重吗?请通过计算说明理由.
【答案】 (1)若要吊起此货箱,起重机对货箱的拉力:F拉′=G=2.44×104N,
支点为B,配重的力臂:BD=BC+CD=4m+1.5m=5.5m,
根据杠杆平衡条件可得:F拉′×AB=G起重机×BO+G配重×BD,
即:2.44×104N×10m=2.4×104N×1m+G配重×5.5m,
解得:G配重=4×104N;
(2)不起吊物体时,支点为C,起重机自重的力臂:OC=BC﹣BO=4m﹣1m=3m;配重的力臂:CD=1.5m.
根据杠杆平衡条件可得:G起重机×OC=G配重′×CD, 即:2.4×104N×3m=G配重′×1.5m,
解得最大配重:G配重′=4.8×104N,
最大配重的质量: m′= =4.8×103kg=4.8t,
因为4.8t<8t, 所以这起重机不能配8t的配重,否则起重机在不工作时就向右翻倒.
【考点】杠杆的平衡条件
变式训练 .为了将放置在水平地面上质量为10kg的重物提升到高处。小明同学设计了图(甲)所示的滑轮组装置。当小明用图(乙)所示随时间变化的竖直向下拉力F拉绳时,重物的速度υ和上升的高度h随时间t变化的关系图像分别如图(丙)和(丁)所示。若重物与地面的接触面积S=500cm2 , 不计摩擦和绳重,绳对滑轮的拉力方向均可看成在竖直方向。
(1)重物放在水平地面上时,地面受到的压强是多少帕斯卡?
(2)1~3秒内物体的动能如何变化?________
(3)动滑轮的重力为________N
(4)在2~3s内,拉力F做功的功率是多少?
【答案】 (1)解:F=G=mg=10kg×10N/kg=100N
p=F/S=100N/(500×10-4m2)=2000Pa
(2)1~2s内动能增加,2~3s内动能保持不变(先增大后保持不变)
(3)20N
(4)解: 2~3s内,自由端绳子移动的速度;
拉力F的功率为:。
【考点】压强的大小及其计算,功率计算公式的应用,滑轮组及其工作特点
三、测量斜面的机械效率
(1)光滑斜面:FL=Gh W额外=0 η=100﹪
(2)有摩擦的斜面:W总=FL W有用=Gh W额外=FL η=Gh/FL
(3)斜面的机械效率与斜面的粗糙程度和倾角有关。
例题9 如图是水位装置的示意图。该装置主要由滑轮C、D,物体A、B以及轻质杠杆MN组成。物体A通过细绳与滑轮C相连,物体B通过细绳与杠杆相连。杠杆可以绕支点O在竖直平面内转动,杠杆始终在水平位置平衡,且MO:MN=1:3。物体B受到的重力为100N,A的底面积为0.04m2 , 高1m。当物体A恰好浸没在水中时,物体B对电子秤的压力为F1;若水位下降至物体A恰好完全露出水面时,物体B对电子秤的压力为F2 , 已知:F1﹕F2=6﹕1。滑轮重、滑轮与转轴的摩擦、杠杆与轴的摩擦均忽略不计。求:
(1)物体A完全浸没时,A受到的浮力F浮。________
(2)物体A的密度ρA。________
(3)当物体A有部分浸入水中时,如果把细绳由N端向左移动到N′处,电子秤的示数恰好为零,NN′:MN=1﹕6,此时物体A浸在水中的体积V浸。________
浙江新中考 如图所示,有一斜面长为L,高为h,现用力F沿斜面把物重为G的物体从底端匀速拉到顶端。已知物体受到斜面的摩擦力为f,则下列关于斜面机械效率η的表达式正确的是( )
A. η= ×100% B. η= ×100%
C. η= ×100% D. η= ×100%
【答案】 D
【考点】机械效率的计算,斜面及其工作特点
例题10 下面是某一科学小组探究“斜面的机械效率”实验装置及实验数据记录表:
(1)沿斜面拉动木块时,为使测力计的示数稳定,应尽量使木块做________运动;表格中空缺一项数据为________。
(2)表中数据中,斜面最陡时,请计算此时物块受到斜面的摩擦力。
【答案】 (1)匀速;20%
(2)当斜面最陡时,有用功W有=Gh=10N×0.5m=5J;
总功W总=Fs=8N×1m=8J;
额外功W额=W总-W有=8J-5J=3J;
摩擦力。
【考点】功的计算公式的应用,机械效率的计算 斜面的倾斜程度
物块重(N)
斜面高(m)
沿斜面拉力(N)
斜画长(m)
机械效率
较缓
10
0.1
5.0
1
较陡
10
0.3
6.7
1
45%
最陡
10
0.5
8.0
1
62.5%
相关学案
这是一份第十六讲:生命的结构层次学案,共13页。学案主要包含了显微镜,生物的多样性,解答题等内容,欢迎下载使用。
这是一份第十九讲:生命的延续与进化学案,共11页。学案主要包含了单选题,填空题,解答题,实验探究题等内容,欢迎下载使用。
这是一份讲义第十讲:酸碱中和反应docx学案,共7页。学案主要包含了中和反应及其应用等内容,欢迎下载使用。