高考数学(理数)一轮复习课时作业53《椭圆》(原卷版)
展开课时作业53 椭圆
1.已知三点P(5,2),F1(-6,0),F2(6,0),那么以F1,F2为焦点且经过点P的椭圆的短轴长为( )
A.3 B.6
C.9 D.12
2.设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )
A. B.
C. D.
3.已知点P是椭圆+=1上一点,F1,F2分别为椭圆的左、右焦点,M为△PF1F2的内心,若S△MPF1=λS△MF1F2-S△MPF2成立,则λ的值为( )
A. B.
C. D.2
4.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若·=0,则椭圆的离心率为( )
A. B.
C. D.
5.已知椭圆+=1的左、右焦点分别为F1、F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则△ABF1内切圆的半径为( )
A. B.1
C. D.
6.已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为( )
A. B.
C. D.
7.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为 .
8.过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于 .
9.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°,S△PF1F2=3,则b= .
10.椭圆M:+=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆M上任一点,且|PF1|·|PF2|的最大值的取值范围是[2b2,3b2],椭圆M的离心率为e,则e-的最小值是 .
11.已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
12.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.
(1)求椭圆E的离心率;
(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.
13.设F是椭圆C:+=1(a>b>0)的一个焦点,P是C上的点,圆x2+y2=与线段PF交于A,B两点,若A,B是线段PF的两个三等分点,则椭圆C的离心率为( )
A. B.
C. D.
14.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得=,则该椭圆离心率的取值范围为( )
A.(0,-1) B.
C. D.(-1,1)
15.过椭圆+=1(a>b>0)上的动点M作圆x2+y2=的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,则△EOF面积的最小值是 .
16.已知椭圆C:+=1(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,点D为AB的中点.
(1)若直线l与直线OD(O为坐标原点)的斜率之积为-,求椭圆C的方程;
(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有∠AMO=∠BMO(O为坐标原点)?若存在,求出定点M的坐标;若不存在,请说明理由.
高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版): 这是一份高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版),共3页。
高考数学(理数)一轮复习课时作业55《抛物线》(原卷版): 这是一份高考数学(理数)一轮复习课时作业55《抛物线》(原卷版),共5页。试卷主要包含了已知抛物线C,已知抛物线C1等内容,欢迎下载使用。
高考数学(理数)一轮复习课时作业54《双曲线》(原卷版): 这是一份高考数学(理数)一轮复习课时作业54《双曲线》(原卷版),共4页。试卷主要包含了已知F为双曲线C,已知双曲线C,已知双曲线C1,已知F1、F2为双曲线C等内容,欢迎下载使用。