![[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12767680/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12767680/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12767680/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选)
展开
这是一份[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选),共20页。试卷主要包含了二次函数y=等内容,欢迎下载使用。
2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于x的方程中,一定是一元二次方程的是( )A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=02、如图,在中,,,则的值为( )A. B. C. D.3、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.164、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )A.63° B.58° C.54° D.56°5、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )A.﹣2 B.﹣1 C.1 D.26、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A.7 B.12 C.14 D.187、二次函数y=(x+2)2+5的对称轴是( )A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣28、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.A.3 B.2 C.1 D.09、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.10、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______2、计算:_________,_________,_________.分解因式:_________,_________,________.3、如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为__________4、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.5、当x___时,二次根式有意义;三、解答题(5小题,每小题10分,共计50分)1、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.2、计算:3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?4、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.5、如图,射线、、、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合.(1)图中与互余的角是_______;(2)①用直尺和圆规作的平分线;(不写作法,保留作图痕迹)②在①所做的图形中,如果,那么点在点的_______方向. -参考答案-一、单选题1、C【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:A.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;B.2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;C.(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;D.当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).2、C【分析】由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.【详解】解:在直角三角形ABC中,∠C=90°∵sinA=,∴可设a=5k,c=13k,由勾股定理可求得b=12k,∴cosA=,故选:C.【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.3、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.4、C【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.5、D【分析】将x=1代入原方程即可求出答案.【详解】解:将x=1代入原方程可得:1+a-2b=0,∴a-2b=-1,∴原式=-2(a-2b)=2,故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.6、C【分析】第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.【详解】解:,2a-8=x-3,x=2a-5,∵方程的解为非负数,x-3≠0,∴,解得a≥且a≠4,,解不等式组得:,∵不等式组无解,∴5-2a≥-7,解得a≤6,∴a的取值范围:≤a≤6且a≠4,∴满足条件的整数a的值为3、5、6,∴3+5+6=14,故选:C.【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.7、D【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.故选:D.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.8、A【分析】①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.【详解】解:①如下图,连接AM,延长DE交BF于J,∵四边形ABCD是正方形,∴AB=AD,∠DAE=∠BAF=90°,由题意可得AE=AF,∴△BAF≌△DAE(SAS),∴∠ABF=∠ADE,∵∠ADE+∠AED=90°,∠AED=∠BEJ,∴∠BEJ+∠EBJ=90°,∴∠BJE=90°,∴DJ⊥BF,由翻折可知:EA=EM,DM=DA,∴DE垂直平分线段AM,∴BF∥AM,故①正确;②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可得∠M=90°,∴∠MEJ=∠MJE=45°,∴∠JED=∠JDE=22.5°,∴EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,∴x=4﹣4,∴AE=4﹣4,故②正确;③如下图,连接CF,当EF=CE时,设AE=AF=m,则在△BCE中,有2m²=4²+(4-m)2,∴m=4﹣4或-4﹣4 (舍弃),∴AE=4﹣4,故③正确;故选A.【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.9、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.10、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.二、填空题1、130°130度【分析】先计算出,再根据可求出结论.【详解】解:∵, ∴ ∵ ∴ 故答案为:130°【点睛】本题考查了角的计算及余角的计算,熟悉图形是解题的关键.2、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,,.分解因式:,,.故答案为:;;;;;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.3、3【分析】由题意,先画出几何体的左视图,然后计算面积即可.【详解】解:根据题意,该几何体的左视图为:∴该几何体的左视图的面积为3;故答案为:3.【点睛】本题考查了简单几何体的三视图,解题的关键是正确的画出左视图.4、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.5、≥【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,2x+3≥0,解得x≥,故答案为:≥.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,比较基础.三、解答题1、110°【分析】根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.【详解】解:∵AB=AC,∠BAC=80°,AD⊥BC,∴∠BAD=∠CAD=∠BAC=40°,∵AD=AB,∴∠BDA=×(180°﹣40°)=70°,∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.【点睛】本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.2、【分析】原式各项化为最简二次根式,去括号合并即可得到结果.【详解】解:原式.【点睛】此题考查了二次根式的加减法,涉及的知识有:二次根式的化简,去括号法则,以及合并同类二次根式法则,熟练掌握法则是解本题的关键.3、50【分析】设购进x盏节能灯,列一元一次方程解答.【详解】解:设购进x盏节能灯,由题意得25x+160=30(x-3)解得x=50,答:该商店共购进了50盏节能灯.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.4、,【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.【详解】解: ,当,时,原式.【点睛】本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.5、(1)、(2)①作图见解析;②北偏东或东偏北【分析】(1)由题可知,故可知与互余的角;(2)①如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;②,,进而得出P与O有关的位置.(1)解:图中与互余的角是和;故答案为:、.(2)①如图,为所作;②,,平分,,,即点在点的北偏东方向或东偏北故答案为:北偏东或东偏北.【点睛】本题考查了余角,角平分线以及坐标系中的位置.解题的关键在于正确的求解角度.
相关试卷
这是一份[中考专题]2022年北京市朝阳区中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共25页。试卷主要包含了在以下实数中等内容,欢迎下载使用。
这是一份【真题汇编】2022年甘肃省兰州市中考数学历年真题定向练习 卷(Ⅰ)(精选),共26页。试卷主要包含了已知,则的值为,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
这是一份【真题汇编】2022年福建省厦门市中考数学历年真题定向练习 卷(Ⅰ)(精选),共22页。试卷主要包含了若单项式与是同类项,则的值是,多项式去括号,得等内容,欢迎下载使用。
