搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)

    2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)第1页
    2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)第2页
    2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第九章 三角形综合与测试巩固练习

    展开

    这是一份冀教版七年级下册第九章 三角形综合与测试巩固练习,共22页。试卷主要包含了如图,已知,,,则的度数为,定理等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是(  )A.30° B.35° C.45° D.60°2、如图,的中线,,则的长为(       A. B. C. D.3、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是(       A.63° B.58° C.54° D.56°4、若一个三角形的两条边的长为5和7,那么第三边的长可能是(       A.2 B.10 C.12 D.135、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是(       A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α6、下图中能体现∠1一定大于∠2的是(  )A. B.C. D.7、如图,已知,则的度数为(       A.155° B.125° C.135° D.145°8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换).证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).下列说法正确的是(  )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、利用直角三角板,作的高,下列作法正确的是(       A. B.C.  D.10、如图,将一副三角板平放在一平面上(点D上),则的度数为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知中,,高所在直线交于,则的度数是________.2、如图,直线ED分成一个和四边形BDEC的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.3、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)4、如图,△ABC中,∠B=20°,DBC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.5、如图,在直线l1l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1l2之间,如果∠1=35°,那么∠2=___度. 三、解答题(5小题,每小题10分,共计50分)1、已知AMCN,点B在直线AMCN之间,ABBC于点B(1)如图1,请直接写出∠A和∠C之间的数量关系:          (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MABCH平分∠NCBAECH交于点G,则∠AGH的度数为          2、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数3、如图是ABC三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看AB岛的视角∠ACB为多少?4、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.(1)边BC的取值范围是         (2)△ABD与△ACD的周长之差为 (3)在△ABC中,若AB边上的高为2,求AC边上的高.5、如图,在中(),边上的中线的周长分成两部分,求的长. -参考答案-一、单选题1、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.2、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵的中线,BM= 故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.3、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由ABC绕点C按逆时针方向旋转至DEC,得到ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至DEC∴△ABC≌△DEC∴∠ACB=∠DCE∴∠BCE=∠ACD∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABC≌△DEC.4、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.5、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α∴∠FDE+∠FED=180°-α由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α∴∠A=180°-(∠ADE+∠AED)=180°-2α故选B【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.6、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.7、B【解析】【分析】根据三角形外角的性质得出,再求即可.【详解】解:∵故选:B.【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.10、B【解析】【分析】根据三角尺可得,根据三角形的外角性质即可求得【详解】解:故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.二、填空题1、45°或135°【解析】【分析】分两种情况讨论:①如图1,为锐角三角形,由题意知,代值计算求解即可;②如图2,为钝角三角形,由题意知,在中,,代值计算求解即可.【详解】解:由题意知①如图1所示,为锐角三角形②如图2所示,为钝角三角形中,综上所述,的值为故答案为:【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.2、三角形两边之和大于第三边【解析】【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可.【详解】解:的周长=四边形BDEC的周长=∵在的周长一定大于四边形BDEC的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.3、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即第三边故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.4、40【解析】【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A故答案为:【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1l2∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等两直线平行,②内错角相等两直线平行,③同旁内角互补两直线平行.三、解答题1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点BBEAM,利用平行线的性质即可求得结论;(2)过点BBEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点BBEAM,如图,BEAM∴∠A=∠ABEBEAMAMCNBECN∴∠C=∠CBEABBC∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点BBEAM,如图,BEAM∴∠A=∠ABEBEAMAMCNBECN∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠CABBC∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CHAB交于点F,如图,AE平分∠MAB∴∠GAFMABCH平分∠NCB∴∠BCFBCN∵∠B=90°,∴∠BFC=90°﹣∠BCF∵∠AFG=∠BFC∴∠AFG=90°﹣∠BCF∵∠AGH=∠GAF+∠AFG∴∠AGHMAB+90°﹣BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.2、【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC中,,∠A-∠B=30°,∠C=4∠B①-②得将③代入④解得,【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.3、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB=80°,DAEB∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,∴∠ABC=∠EBA﹣∠EBC=60°,∵∠DAB=80°,∠DAC=50°,∴∠CAB=30°,∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.4、(1);(2);(3)【解析】【分析】(1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD与△ACD的周长之差转换为的差即可得出答案;(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABCAB=5,AC=3,故答案为:(2)∵△ABD的周长为ACD的周长为AD是△ABC的边BC上的中线,-()=故答案为:(3)设AC边上的高为根据题意得:,解得【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.5、【解析】【分析】由题意可得,由中线的性质得,故可求得,即可求得【详解】由题意知DBC中点BC=24,CD=BD=12且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段. 

    相关试卷

    初中第九章 三角形综合与测试课时练习:

    这是一份初中第九章 三角形综合与测试课时练习,共25页。

    初中数学第九章 三角形综合与测试复习练习题:

    这是一份初中数学第九章 三角形综合与测试复习练习题,共22页。

    冀教版七年级下册第九章 三角形综合与测试随堂练习题:

    这是一份冀教版七年级下册第九章 三角形综合与测试随堂练习题,共21页。试卷主要包含了下列叙述正确的是,如图,点D等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map