搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版七年级数学下册第九章 三角形章节测评试卷

    精品试卷冀教版七年级数学下册第九章 三角形章节测评试卷第1页
    精品试卷冀教版七年级数学下册第九章 三角形章节测评试卷第2页
    精品试卷冀教版七年级数学下册第九章 三角形章节测评试卷第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第九章 三角形综合与测试复习练习题

    展开

    这是一份冀教版七年级下册第九章 三角形综合与测试复习练习题,共26页。
    冀教版七年级数学下册第九章 三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若三条线段中a=3,b=5,c为奇数,那么以abc为边组成的三角形共有(       A.1个 B.2个 C.3个 D.4个2、如图,已知的外角,,那么的度数是(       A.30° B.40° C.50° D.60°3、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为(       A.8 B.7 C.6 D.54、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D30°,则∠a+∠β等于(       A.180° B.210° C.360° D.270°5、如果一个三角形的两边长都是6cm,则第三边的长不能是(       A.3cm B.6cm C.9cm D.13cm6、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线ab,若BC在直线b上,则∠1的度数为(  )A.40° B.45° C.50° D.60°7、如图,把△ABC绕顶点C按顺时针方向旋转得到△ABC′,当AB′⊥AC,∠A50°,∠ACB115°时,∠BCA的度数为(  )A.30° B.35° C.40° D.45°8、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于(       A.65° B.80° C.115° D.50°9、下图中能体现∠1一定大于∠2的是(  )A. B.C. D.10、如图,四边形ABCD是梯形,的角平分线交于点E的角平分线交于点F,则的大小关系为(     A. B. C. D.无法确定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BE平分AD于点E,连接CEAFCD的延长线于点F,若,则的度数为______.2、如图,直线ED分成一个和四边形BDEC的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.3、如图,在△ABC中,点DEF分别是BCADEC的中点,若△ABC的面积等于36,则△BEF的面积为________.4、如图,将△ABC平移到△A’B’C’的位置(点B’AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.5、如图,在△ABC中,点DEF分别为BCADCE的中点,且SBEF=2cm2,则SABC=__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在同一平面内,点DE是△ABC外的两点,请按要求完成下列问题.(此题作图不要求写出画法)(1)请你判断线段AC的数量关系是_________,理由是_________________.(2)连接线段CD,作射线BE、直线DE,在四边形BCDE的边BCCDDEEB上任取一点,分别为点KLMN并顺次连接它们,则四边形KLMN的周长与四边形BCDE周长哪一个大,直接写出结果(不用说出理由).(3)在四边形KLMN内找一点O,使它到四边形四个顶点的距离之和最小(作图找到点即可).2、已知直线ABCDEF是截线,点M在直线ABCD之间.(1)如图1,连接GMHM.求证:(2)如图2,在的角平分线上取两点MQ,使得.请直接写出之间的数量关系;(3)如图3,若射线GH平分,点NMH的延长线上,连接GN,若,求的度数.3、已知的三边长.(1)若满足,,试判断的形状;(2)化简:4、如图,∠O=30°,任意裁剪的直角三角形纸板ABC的两条直角边所在直线与∠O的两边分别交于DE两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB 度;(2)如图2,若直角顶点C在∠O的内部,求∠ADO+∠OEB的度数;(3)如图3,若直角顶点C在∠O的外部,求∠ADO+∠OEB的度数.5、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长 -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.c是奇数,c=3或5或7,有3个值.则对应的三角形有3个.故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,ADBC边上的中线,ABD的面积为3,∴△ABC的面积=3×2=6.故选:C【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.4、B【解析】【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得解;【详解】解:如图所示,故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.5、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm依题意有故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.6、C【解析】【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可.【详解】解:故选:C.【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.7、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠ACA=90°﹣50°=40°,∴∠BCB′=∠ACA=40°,∴∠BCA=∠ACB﹣∠ACA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.8、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=ABC,∠ECB=ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,BDCE分别是∠ABC、∠ACB的平分线,∴∠CBD=ABC,∠ECB=ACB∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.9、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.10、B【解析】【分析】ADBC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵ADBC∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F∴∠BAE=BAD,∠ABE=ABC,∠CDF=ADC,∠DCF=BCD∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,CDF+∠DCF=(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.二、填空题1、80°##80度【解析】【分析】先根据,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵∴∠ABC+∠BCD=180°,AD∥BC∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD∵∠BAF=∠BAD+∠DAF∴∠BAF+∠AEB=180°,∴∠AEB=∠FAD∥BC∴∠CBE=∠AEBBE平分∴∠ABC=2∠CBE=2∠F∴∠ADC=2∠FCED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F2、三角形两边之和大于第三边【解析】【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可.【详解】解:的周长=四边形BDEC的周长=∵在的周长一定大于四边形BDEC的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.3、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点DEF分别是BCADEC的中点,AEDEADEFCFCEBDDCBC∵△ABC的面积等于36,故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..4、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.5、8cm2【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则SCFBSEFB=2cm2,于是得到SCEB=4cm2,再求出SBDE=2cm2,利用E点为AD的中点得到SABD=2SBDE=4cm2,然后利用SABC=2SABD求解.【详解】解:∵F点为CE的中点,SCFBSEFB=2cm2SCEB=4cm2D点为BC的中点,SBDESBCE=2cm2E点为AD的中点,SABD=2SBDE=4cm2SABC=2SABD=8cm2故答案为:8cm2【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.三、解答题1、 (1)AB+BCAC,三角形的两边之和之和大于第三边(2)作图见解析,四边形KLMN的周长小于四边形BCDE周长(3)见解析【解析】【分析】(1)根据三角形的两边之和大于等三边判断即可;(2)根据直线,射线,线段的大于以及题目要求作出图形即可;(3)连接KMLN交于点O,点O即为所求.【小题1】解:AB+BCAC(三角形的两边之和之和大于第三边),故答案为:AB+BCAC,三角形的两边之和之和大于第三边;【小题2】如图,线段CD,射线BE,直线DE,四边形KLMN即为所求.四边形KLMN的周长小于四边形BCDE周长.理由是:在△EMN和△BNK和△DLM和△CLK中,EM+ENMNBN+BKKNDM+DLMLCK+CLKLEN+EM+DM+DL+BN+BK+CL+CKMN+NK+ML+KL即四边形KLMN的周长小于四边形BCDE周长.【小题3】如图,连接NLMK,交于点O,点O即为所求,根据两点之间,线段最短可得:NLON+OLMKMO+KO∴点O到四个顶点的距离最短.【点睛】本题考查作图-复杂作图,三角形的两边之和大于等三边等知识,解题的关键是理解直线,射线,线段的定义,灵活应用所学知识解决问题.2、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点MMIABEF于点I,可得∠AGM=∠GMI,再由ABCD,可得MICD,从而得到∠CHM=∠HMI,即可求证;(2)过点MMPABEF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点MMKABEF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由ABCD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点MMIABEF于点IMIAB∴∠AGM=∠GMIABCDMICD∴∠CHM=∠HMI∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点MMPABEF于点PMPAB∴∠GMP=∠AGMABCDMPCD∴∠PMH=∠CHMMH平分∠GHC∴∠PHM=∠CHM∴∠PHM=∠PMH∴∠HGQ=∠GMP∵∠GMH=∠GMP+∠PMH∴∠GMH=∠HGQ+∠PHM∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点MMKABEF于点KGH平分∠BGMMKABABCDMKCD∴∠HMK=∠CHM∴∠GMH=∠GMK+HMK=,即∵∠GMH+∠N+∠MGN=180°,解得:ABCD   ∴∠AGH+∠CHG=180°,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.3、(1)是等边三角形;(2)【解析】【分析】(1)由性质可得a=bb=c,故为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵ 是等边三角形.(2)∵的三边长b-c-a<0,a-b+c>0,a-b-c<0原式===【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.4、(1)120;(2)120°;(3)120°【解析】【分析】(1)由三角形外角性质可知,即可得出,即可求出答案;(2)连接OC,由三角形外角性质可知,即可得出, 即得出答案;(3)连接OC,由三角形外角性质可知,即可得出,即得出答案.【详解】解:(1)∵故答案为:120.(2)如图,连接OC (3)如图,连接OC 【点睛】本题主要考查三角形外角的性质,正确的连接辅助线并利用数形结合的思想是解答本题的关键.5、第三边长为7cm或9cm或11cm【解析】【分析】设三角形的第三边长为xcm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为xcm,由三角形的两边长分别是4cm和9cm可得:,即为∵第三边长是奇数,或9或11.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键. 

    相关试卷

    冀教版七年级下册第九章 三角形综合与测试课时作业:

    这是一份冀教版七年级下册第九章 三角形综合与测试课时作业,共23页。试卷主要包含了如图,图形中的的值是,定理等内容,欢迎下载使用。

    冀教版七年级下册第九章 三角形综合与测试复习练习题:

    这是一份冀教版七年级下册第九章 三角形综合与测试复习练习题,共21页。试卷主要包含了下列各图中,有△ABC的高的是,下列图形中,不具有稳定性的是等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习,共22页。试卷主要包含了如图,已知,,,则的度数为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map