初中第九章 三角形综合与测试巩固练习
展开
这是一份初中第九章 三角形综合与测试巩固练习,共22页。试卷主要包含了如图,在ABC中,点D,下列叙述正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )A.42° B.48° C.52° D.58°2、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°3、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )A.5米 B.10米 C.15米 D.20米4、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.25、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )A.30° B.35° C.45° D.60°6、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,57、下列叙述正确的是( )A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角8、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,139、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )A.10° B.20° C.30° D.50°10、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )A.85° B.75° C.55° D.95°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.2、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).3、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.4、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.5、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数). 三、解答题(5小题,每小题10分,共计50分)1、如图,在中,是角平分线,,.(1)求的度数;(2)若,求的度数.2、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.3、如图,ABCD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:AP⊥CP.4、已知射线是的外角平分线.(1)如图1,当射线与的延长线能交于一点时,则 (选填“>”“<”或“=”),并说明理由;(2)如图2,当时,请判断与的数量关系,并证明.5、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系. -参考答案-一、单选题1、B【解析】【分析】根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵,∴,∵,∴,∴,故选:B.【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.2、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.3、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.4、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.5、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.6、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A、2+3=5,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+4<7,不能够组成三角形,不符合题意;D、3+4>5,不能够组成三角形,不符合题意.故选:D.【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.8、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.9、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.10、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵,∴,∵,∴;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.二、填空题1、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案为:.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.2、不合格【解析】【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.3、30【解析】【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.4、120【解析】【分析】根据三角形的外角性质,可得 ,即可求解.【详解】解:∵ 是 的外角,∴ ,∵∠A=50°,∠B=70°,∴ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、3.9【解析】【分析】过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,BC=2.2cm,AD=3.5cm,∴S△ABC=AB•CD=×2.2×3.5=3.85≈3.9(cm2).故答案为:3.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.三、解答题1、 (1);(2).【解析】【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得.(1)解:∵,,∴,∵AD是角平分线,∴,∴;(2)∵,∴,∴,∴.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.2、见解析【解析】【分析】利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.【详解】∵AD是△ABC的角平分线,∴∠BAD=∠CAD,又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,∴∠CAD=∠F,∴.【点睛】此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.3、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出,即可证明AP⊥CP.【详解】证明:∵ABCD(已知),∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补),∵AP、CP分别平分∠BAC、∠ACD(已知),∴∠CAP=∠BAC,∠ACP=∠ACD,∴∠CAP+∠ACP=∠BAC+∠ACD=(∠BAC+∠ACD)=90°,又∵∠CAP+∠ACP+∠P=180°,∴∠P=90°,∴AP⊥CP.【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.4、(1)>,见解析;(2)∠BAC=∠B,见解析【解析】【分析】(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;(2)根据CD∥BA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.【详解】解:(1)>理由:如图,延长BA与射线CD交于点F,∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,∴∠BAC=∠B+2∠AFC,∴∠BAC>∠B;(2)∠BAC=∠B,证明:∵CD∥BA,∴∠BAC=∠ACD,∠B=∠ECD,∵CD平分∠ACE,∴∠ACD=∠ECD,∴∠BAC=∠B.【点睛】本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.5、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【解析】【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共24页。试卷主要包含了定理等内容,欢迎下载使用。
这是一份冀教版第九章 三角形综合与测试复习练习题,共19页。试卷主要包含了如图,在中,AD,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习题,共23页。试卷主要包含了如图,图形中的的值是,下列图形中,不具有稳定性的是等内容,欢迎下载使用。