搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)

    难点解析冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第1页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第2页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若点Pm1)在第二象限内,则点Q1m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限2、平面直角坐标系中,下列在第二象限的点是(       A. B. C. D.3、在平面直角坐标系的第二象限内有一点P,点Px轴的距离为2,到y轴的距离为3,则点P的坐标是(       A. B. C. D.4、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(       A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)5、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是(       A. B. C. D.6、在平面直角坐标系xOy中,点A(0,2),Ba,0),Cmn)(n>0).若△ABC是等腰直角三角形,且ABBC,当0<a<1时,点C的横坐标m的取值范围是(   A.0<m<2 B.2<m<3 C.m<3 D.m>37、已知点Am,2)与点B(1,n)关于y轴对称,那么m+n的值等于(  )A.﹣1 B.1 C.﹣2 D.28、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为(       A. B. C. D.9、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为(       ).A.1 B. C.7 D.10、在平面直角坐标系中,点关于轴的对称点的坐标是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A在第二象限内,ACOB于点CB(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.2、若点关于x轴对称,则b的值为______.3、若点x轴上,则m的值为______.4、在平面直角坐标系中,点关于y轴的对称点的坐标为______.5、如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点Px轴下方,且以OAP为顶点的三角形与OAB全等,则满足条件的P点的坐标是________.三、解答题(5小题,每小题10分,共计50分)1、如图,线段AB的两个端点的坐标分别为,线段AB与线段,关于直线m(直线m上各点的横坐标都为5)对称,线段,与线段关于直线n(直线n上各点的横坐标都为9)对称.(1)在图中分别画出线段(2)若点关于直线m的对称点为,点关于直线n的对称点为,则点的坐标是     2、如图,在平面直角坐标系中,的三个顶点为(1)画出关于x轴对称的(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,画出3、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形(4)在x轴上找到一点P,使最小,则的最小值是_________.4、在平面直角坐标系xOy中,将点x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”(1)点的“相对轴距”______;(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;(3)已知点,点MN内部(含边界)的任意两点.①直接写出点M与点N的“相对轴距”之比的取值范围;②将向左平移个单位得到,点与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.5、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点分别在轴、轴上,设点轴上异于点的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设                          (1)直接写出的范围;(2)若点轴上的动点,结合图形,求(用含的式子表示);(3)当点轴上的动点时,求的周长的最小值,并说明此时点的位置. -参考答案-一、单选题1、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm1)在第二象限内,m01m0则点Q1m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点Px轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.4、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.5、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点位于第三象限,解得:故选:【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.6、B【解析】【分析】过点CCDx轴于D,由“AAS”可证AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点CCDx轴于D∵点A(0,2),AO=2,∵△ABC是等腰直角三角形,且AB=BC∴∠ABC=90°=∠AOB=∠BDC∴∠ABO+∠CBD=90°=∠ABO+∠BAO∴∠BAO=∠CBDAOBBDC中,∴△AOB≌△BDCAAS),AO=BD=2,BO=CD=n=a∴0<a<1,OD=OB+BD=2+a=m ∴2<m<3,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.7、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出mn的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.8、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点AACOBC,∠AOB=A,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转∴第1秒时,点A的对应点的坐标为∵三角板每秒旋转∴此后点的位置6秒一循环,∴则第2022秒时,点A的对应点的坐标为故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.9、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出ab的值,进而得出答案.【详解】解:∵点Pa,3)和点Q(4,b)关于x轴对称,a=4,b=-3,a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出ab的值是解题关键.10、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点Pxy)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.二、填空题1、【解析】【分析】利用直角三角形的性质和勾股定理求出OCAC的长,再运用三角形面积公式求出即可.【详解】解:∵ACOB ∵∠AOB=60°, OA=4, RtACO中, 故答案为:【点睛】本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OCAC的长是解答本题的关键.2、【解析】【分析】平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,−y),据此即可求解.【详解】解:依题意可得a=-4,b=-3,故答案为:-3.【点睛】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.3、【解析】【分析】根据x轴上点的纵坐标为0,即可求解.【详解】∵点x轴上,解得:故答案为:【点睛】本题考查了x轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x轴上的点的纵坐标为0.4、【解析】【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:点关于y轴对称的点的坐标是故选:【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.5、##【解析】【分析】根据题意,这两个三角形中为公共边,故分两种情况讨论,根据题意作出图形,进而求得点的坐标【详解】解:如图,①作关于的对称的点,连接 B(4,2),则②作关于)对称的点,连接则点故答案为:【点睛】本题考查了坐标与图形,全等三角形的性质与判定,轴对称的性质,掌握轴对称的性质是解题的关键.三、解答题1、(1)见解析;(2)【解析】【分析】(1)分别作出AB二点关于直线m的对称点A1B1,再分别作A1B1,二点关于直线n的对称点A2B2即可;(2)根据轴对称的性质得出坐标即可.【详解】解:(1)如图,线段即为所求;(2)由轴对称性质可得横坐标平均数等于5,纵坐标相等,则由轴对称性质可得横坐标平均数等于9,纵坐标相等,则【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称的性质.2、 (1)见解析(2)见解析【解析】【分析】(1)分别作出关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.3、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据AB两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,ABC即为所求,SABC==【小题3】如图,A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=AP+PB= AB==【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.4、 (1)2;(2)见详解;(3)①;②【解析】【分析】(1)根据题意正确写出答案即可;(2)根据题意画出图形即可;(3)①正确画出图形,根据题意分别求出的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.(1)解:x轴和y轴的距离的较大值定义为点M的“相对轴距”,点 2;(2)解:的“相对轴距”是2,与点的“相对轴距”相等的点的横纵坐标的最大值为2,依题意得到的图形是正方形,如图,(3)解:①如图,当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”,取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合, 的最小值为1,的最大值为3时,的最小值为取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,的最大值为3,的最小值为1时,的最大值3,              与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,依题意,点的坐标为在两点(1,1),(-1,1)确定的线段上,【点睛】本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.5、 (1)(2)(3)只有当点轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出的度数即可;(3)当点在点之间时,过点轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,BNOC的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,所以,的范围是(2)解:当点在点之间时,此时BCOA∵∠MBN=45°,互余,当点在点的左边时,此时同理可得,当点在点的右边且在(8,0)左侧时,据题意,同理可得,(3)解:当点在点之间时,如图①,过点轴于点,又,而的周长为当点在点的左边时,如图②,必有,故当点在点的右边时,如图③,则,而综上所述,只有当点轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明. 

    相关试卷

    初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,若点在轴上,则点的坐标为,在下列说法中,能确定位置的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共22页。试卷主要包含了若点P,点关于轴的对称点是等内容,欢迎下载使用。

    数学第十九章 平面直角坐标系综合与测试达标测试:

    这是一份数学第十九章 平面直角坐标系综合与测试达标测试,共26页。试卷主要包含了在平面直角坐标系中,点P,已知点和点关于轴对称,则的值为,在平面直角坐标系xOy中,点M,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map