![精品试题冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12765717/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12765717/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12765717/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共20页。试卷主要包含了在平面直角坐标系中,已知点P,在平面直角坐标系中,点A,在平面直角坐标系中,点在等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)2、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是( )A. B. C. D.3、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为( )A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)4、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )A. B. C. D.5、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向6、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)7、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)9、在平面直角坐标系中,点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限10、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为______.2、已知点,是关于x轴对称的点,______.3、一般地,在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点_________;将点(x,y)向左平移a个单位长度,可以得到对应点_________;将点(x,y)向上平移b个单位长度,可以得到对应点_________;将点(x,y)向下平移b个单位长度,可以得到对应点_________.4、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标______;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.5、已知点A关于x轴的对称点B的坐标为(1,﹣2),则点A的坐标为_____.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,的三个顶点坐标分别是.(1)画出;(2)将平移,使点A平移到原点O,画出平移后的图形并写出点B和点C的对应点坐标.2、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).3、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).4、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形;(4)在x轴上找到一点P,使最小,则的最小值是_________.5、在的正方形网格中,小正方形的边长均为1个单位长度.(1)画出绕点O逆时针旋转90°的;(2)再画出关于点O的中心对称图形. -参考答案-一、单选题1、A【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.2、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.3、C【解析】【分析】连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.【详解】解:如图,连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,由旋转可知:∠MOM1=90°,OM=OM1,则∠AOM1+∠BOM=90°,又∠AOM1+∠AM1O=90°,∴∠AM1O=∠BOM,又∵∠OAM1=∠OBM=90°,OM=OM1,∴△OAM1≌△MBO(AAS),∴OA=BM=1,AM1=OB=2,∴M1(2,1),故选C.【点睛】本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.4、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.5、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.6、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.7、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.8、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.9、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:,,在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.10、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.二、填空题1、(0,)【解析】【分析】先根据题意得出OA=6,OC=2,再根据勾股定理计算即可.【详解】解:由题意可知:AC=AB,∵A(6,0),C(-2,0)∴OA=6,OC=2,∴AC=AB=8,在Rt△OAB中,,∴B(0,).故答案为:(0,).【点睛】本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.2、3【解析】【分析】根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.【详解】解:∵点,是关于x轴对称的点,∴b=-1,a+1=3,解得a=2,2-(-1)=3,故答案为:3.【点睛】此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.3、 (x+a,y) (x-a,y) (x,y+b) (x,y-b)【解析】略4、 或##或【解析】【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.5、【解析】【分析】根据“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”,求解即可【详解】解:∵点A关于x轴的对称点B的坐标为(1,﹣2),∴点A的坐标为故答案为:【点睛】本题考查了关于x轴对称的点的坐标特征,掌握“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”是解题的关键.三、解答题1、 (1)画图见解析;(2)画图见解析,,【解析】【分析】(1)根据即可画出;(2)先画出平移后的,再写出点B1和点C1的坐标即可.(1)解:如图所示:即为所求.(2)解:平移后的如图所示:此时,【点睛】本题考查了作图-平移变换,掌握平移的性质是解决本题的关键.2、(1)图见解析;(2)图见解析.【解析】【分析】(1)先根据平移分别画出点,再顺次连接即可得;(2)先根据轴对称的性质画出点,再顺次连接即可得.【详解】解:(1)如图,即为所求;(2)如图,即为所求.【点睛】本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.3、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.4、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据A,B两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,△ABC即为所求,S△ABC==;【小题3】如图,△A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=A′P+PB= A′B==.【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.5、 (1)见解析(2)见解析【解析】【分析】(1)根据旋转的性质即可作图;(2)根据中心对称的性质即可作图.(1)如图所示;(2)如图所示△A2B2C2即为所求.【点睛】本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共23页。试卷主要包含了点P,如果点P等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试复习练习题,共31页。试卷主要包含了如果点P,已知点A,下列命题中,是真命题的有,点关于轴对称的点是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了在平面直角坐标系中,点P,若平面直角坐标系中的两点A,下列命题中为真命题的是等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)