![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形定向测试练习题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12764662/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形定向测试练习题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12764662/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形定向测试练习题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12764662/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第二十二章 四边形综合与测试复习练习题
展开
这是一份初中数学第二十二章 四边形综合与测试复习练习题,共24页。
八年级数学下册第二十二章四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )A.2 B. C.3 D.2、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )A.157° B.147° C.137° D.127°3、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )①;②;③;④.A.①②③ B.①②④ C.①③④ D.②③④4、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )A.80° B.90° C.100° D.110°5、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°6、下面性质中,平行四边形不一定具备的是( )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分7、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为( )A. B. C. D.8、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变9、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )A.线段的长逐渐增大 B.线段的长逐渐减少C.线段的长不变 D.线段的长先增大后变小10、一个多边形的每个内角均为150°,则这个多边形是( )A.九边形 B.十边形 C.十一边形 D.十二边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、五边形内角和为__________.2、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.3、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.5、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.三、解答题(5小题,每小题10分,共计50分)1、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为 ;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是 ;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;用两种不同的方法数锐角个数,可以得到等式 .(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.2、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.3、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.4、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.(1)如图1,若,,求CD的长;(2)如图2,若G为EF上一点,且,求证:.5、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.请回答:在你的作法中,判定四边形AECF是菱形的依据是 . -参考答案-一、单选题1、D【解析】略2、C【解析】【分析】根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.【详解】解:∵四边形ABCD是平行四边形,∴AC=2AO,∵,∴AO=AB,∵,∴,∴=,故选:C.【点睛】此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.3、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD是正方形,∴,,在与中,,∴,∴,①正确;∵,,∴,∴,∴,②正确;∵GF与BG的数量关系不清楚,∴无法得AG与GE的数量关系,③错误;∵,∴,∴,即,④正确;综上可得:①②④正确,故选:B.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.4、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.5、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.6、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.7、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,在Rt△ABP中,,由面积相等可知:,解得,故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.8、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE,∵,∴,故选:D..【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.9、C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】解:连接.、分别是、的中点,为的中位线,,为定值.线段的长不改变.故选:.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.10、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.二、填空题1、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.2、4【解析】【分析】从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.【详解】解:过六边形的顶点的所有对角线可将六边形分成个三角形.故答案为4.【点睛】本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.3、##【解析】【分析】过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.【详解】解:如图,过点作在Rt中,,CD是斜边AB上的中线,为的中点,又为的中点,则在中,的周长等于故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.4、49【解析】【分析】延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.【详解】如图,延长FE交AB于点M,则,,∵四边形ABCD是正方形,∴,∴是等腰直角三角形,∴,在中,,∴,∴.故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.5、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.三、解答题1、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)【解析】【分析】(1)①根据边长为(a+b)的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.【详解】解:(1)①大正方形的面积为;②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;可以得到等式:=;故答案为:①;②;=;(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;②锐角的总个数是n(n-1);可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);(3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22=2×(20002+222) =2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即×4×(4-3)=2;一个五边形共有5条对角线,即×5×(5-3)=5;一个六边形共有9条对角线,即×6×(6-3)=9;……,一个十七边形共有×17×(17-3)=119条对角线;一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.故答案为:119,n(n-3).【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.2、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..3、【解析】【分析】连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.【详解】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中,∵T为AF的中点,∴,∴CT的长为.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.4、 (1)7(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.(1)解:在中,AB∥CD,AB=CD, ∴∠EBF=∠CFB,∵FB平分,∴∠EFB=∠CFB,∴∠EFB=∠EBF,∴BE=EF=5,∵AE=2,∴CD=AB=AE+BE=7;(2)证明:如图,再CF上截取FN=FG,∵,∴ ,∴∠BGF=∠BNF,∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,∴∠BGF=∠BFN,∴∠BFN=∠BNF,∴∠BFD=∠BNC,∵BC⊥BD,∴∠CBD=90°,∵∠BCD=45°,∴∠BDC=∠BCD=45°,∴BC=BD,∴△BDF≌△BCN(AAS),∴NC=FD,∴CD=DF+FN+CN=2FD+FG,∵AB=CD,∴FG+2FD=AB.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.5、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF即为所求作.理由:四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,∵EF垂直平分线段AC,∴OA=OC,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,∴四边形AECF是平行四边形,∵EA=EC或AC⊥EF,∴四边形AECF是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试巩固练习,共23页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
这是一份数学第二十二章 四边形综合与测试综合训练题,共33页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)