![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形重点解析试题(含详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12764651/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形重点解析试题(含详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12764651/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形重点解析试题(含详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12764651/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级下册第二十二章 四边形综合与测试随堂练习题
展开
这是一份数学八年级下册第二十二章 四边形综合与测试随堂练习题,共22页。
八年级数学下册第二十二章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、正方形具有而矩形不一定具有的性质是( )A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等2、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )A.1 B.2 C. D.23、下列说法不正确的是( )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直4、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°5、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形 B.菱形 C.正方形 D.梯形6、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④7、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形8、十边形中过其中一个顶点有( )条对角线.A.7 B.8 C.9 D.109、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10、下列命题错误的是( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.2、平行四边形的判定方法:(1)两组对边分别______的四边形是平行四边形(2)两组对边分别______的四边形是平行四边形(3)两组对角分别______的四边形是平行四边形(4)对角线______的四边形是平行四边形(5)一组对边______的四边形是平行四边形3、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.4、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.5、添加一个条件,使矩形ABCD是正方形,这个条件可能是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .2、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.(1)求证:四边形是平行四边形:(2)若.①当___________时,四边形是矩形;②若四边形是菱形,则________.3、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.4、已知正方形与正方形,,.(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).5、如图,▱ABCD中,E为BC边的中点,求证:DC=CF. -参考答案-一、单选题1、B【解析】略2、C【解析】【分析】根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∴∠ABE+∠BAO=∠DAF+∠BAO=90°,∴∠AOB=90°,∵△ABE≌△DAF,∴S△ABE=S△DAF,∴S△ABE-S△AOE=S△DAF-S△AOE,即S△ABO=S四边形OEDF=1,∵OA=1,∴BO=2,∴AB=,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.3、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.4、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.5、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB=CD,BC=AD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故选:B.【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.6、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.7、D【解析】【分析】当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.【详解】解:如图,连接当为各边中点时,可知分别为的中位线∴∴四边形是平行四边形A中AC=BD,则,平行四边形为菱形;正确,不符合题意;B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.8、A【解析】【分析】根据多边形对角线公式解答.【详解】解:十边形中过其中一个顶点有10-3=7条对角线,故选:A.【点睛】此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.9、B【解析】略10、C【解析】【分析】根据平行四边形的判定逐项分析即可得.【详解】解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,故选:C.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.二、填空题1、##3.5【解析】【分析】延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.【详解】解:如图,延长AB、CF交于点H,∵四边形ABCD是平行四边形,∴,∴∠ACD=∠BAC=90°,∴,∵AF平分∠BAC,∴∠BAF=∠CAF=45°,在和中,,∴,∴AC=AH=12,HF=CF,∴BH=AH﹣AB=7,∵点E是BC的中点,HF=CF,∴EF=BH=,故答案为:.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.2、 平行 相等 相等 互相平分 平行且相等【解析】略3、3【解析】【分析】根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.【详解】解:∵四边形ABCD为平行四边形,∴,,∵,∴,∵,BE平分,∴,,∴,∴,故答案为:3.【点睛】题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.4、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,,这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.5、或或或或【解析】【分析】根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.【详解】解:根据有一组邻边相等的矩形是正方形得:这个条件可能是或或或,根据对角线互相垂直的矩形是正方形得:这个条件可能是,故答案为:或或或或.【点睛】本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.三、解答题1、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= .故答案为:.【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2、 (1)见解析;(2)①3;②【解析】【分析】(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.(1)证明:∵点D、E分别是边BC、AC的中点,∴DEAB,BD=CD,∵,∴四边形ABDF是平行四边形,∴AF=BD=CD,∴四边形是平行四边形;(2)解:①∵点D、E分别是边BC、AC的中点,∴DE=AB,∵四边形是平行四边形,∴DF=2DE=AB=3,∵四边形是矩形,∴AC=DF=3,故答案为:3;②∵四边形是菱形,∴DF⊥AC,∵DEAB,∴AB⊥AC,∴AD=BC=2.5, ∴AE=EC=2,∵∴∴,故答案为:.【点睛】此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.3、 11 见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.4、 (1)(2)(3)(4)5、见解析【解析】【分析】根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE;∵E为BC中点,∴EB=EC,在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份初中冀教版第二十二章 四边形综合与测试同步训练题,共26页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精练,共24页。试卷主要包含了下列命题是真命题的有个.,下列说法不正确的是,如图,菱形的对角线等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后复习题,共26页。试卷主要包含了下列关于的叙述,正确的是,如图,在正方形ABCD中,点E等内容,欢迎下载使用。