22方程的意义(基础)知识讲解练习题
展开方程的意义(基础)知识讲解
【学习目标】
1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;
2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;
3. 理解并掌握等式的两个基本性质.
【要点梳理】
要点一、方程的有关概念
1.定义:含有未知数的等式叫做方程.
要点诠释:
判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.
2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.
要点诠释:
判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;
②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.
3.解方程:求方程的解的过程叫做解方程.
4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).
要点二、一元一次方程的有关概念
定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.
要点诠释: “元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:
①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.
要点三、等式的性质
1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.
2.等式的性质:
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:
如果,那么 (c为一个数或一个式子) .
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:
如果,那么;如果,那么.
要点诠释:
(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;
(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,
如x=0中,两边加上得x+,这个等式不成立;
(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.
【典型例题】
类型一、方程的概念
1.下列各式哪些是方程?
①3x-2=7; ②4+8=12; ③3x-6;
④2m-3n=0; ⑤3x2-2x-1=0; ⑥x+2≠3;
⑦; ⑧.
【答案与解析】
解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.
【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.
举一反三:
【变式】下列四个式子中,是方程的是( )
A. 3+2=5 B. x=1 C. 2x﹣3<0 D. a2+2ab+b2
【答案】B.
2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是( )
A. 4x﹣1=3x+2 B. 4x+8=3(x+1)+1
C. 5(x+1)=4(x+2)﹣1 D. x+4=3(2x﹣1)
【答案】C.
【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.
举一反三:
【变式】下列方程中,解是x=3的是( )
A.x+1=4 B.2x+1=3 C.2x-1=2 D.
类型二、一元一次方程的相关概念
3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.
A.1 B.2 C.3 D.4
【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.
【答案】B.
【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.
【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.
举一反三:
【变式】下列方程中是一元一次方程的是__________(只填序号).
①2x-1=4;②x=0;③ax=b;④.
【答案】①②.
类型三、等式的性质
4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.
(1)如果,那么________;
(2)如果ax+by=-c,那么ax=-c+________;
(3)如果,那么=________.
【答案与解析】
解: (1). 11;根据等式的性质1,等式两边都加上11;
(2).(-by); 根据等式的性质1,等式两边都加上-by;
(3).; 根据等式的性质2,等式两边都乘以.
【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.
举一反三:
【变式】下列说法正确的是( ).
A.在等式ab=ac两边都除以a,可得b=c.
B.在等式a=b两边除以c2+1,可得.
C.在等式两边都除以a,可得b=c.
D.在等式2x=2a-b两边都除以2,可得x=a-b.
【答案】B.
类型四、设未知数列方程
5.根据问题设未知数并列出方程:
一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?
【答案与解析】
解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.
可以采用列表法探究其解
显然,当x=21时,4x-(25-x)×1=80.
所以小明要做对21道题.
【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.
举一反三:
【变式】根据下列条件列出方程.
(l)x的5倍比x的相反数大10;
(2)某数的比它的倒数小4;
(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?
【答案】(1)5x-(-x)=10;(2)设某数为x,则;(3)设甲用x分钟追上乙,由题意得.
数学七年级上册5.1 认识一元一次方程测试题: 这是一份数学七年级上册5.1 认识一元一次方程测试题,共4页。
10平方根(基础)知识讲解练习题: 这是一份10平方根(基础)知识讲解练习题,共4页。
13实数(基础)知识讲解练习题: 这是一份13实数(基础)知识讲解练习题,共4页。