|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷 解析版
    立即下载
    加入资料篮
    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷   解析版01
    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷   解析版02
    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷   解析版03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷 解析版

    展开
    这是一份2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷 解析版,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷
    一、选择题(本大题有10小题,每小题3分,共30分。请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分。)
    1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(  )
    A. B. C. D.
    2.(3分)已知三角形的两边长分别为2和7,则该三角形的第三边长可以为(  )
    A.3 B.5 C.7 D.9
    3.(3分)如图,△ABC中,AB=AC,D是BC的中点,∠BAC=50°,则∠BAD的度数为(  )

    A.25° B.50° C.65° D.100°
    4.(3分)下列命题中,正确的是(  )
    A.三条边对应相等的两个三角形全等
    B.周长相等的两个三角形全等
    C.三个角对应相等的两个三角形全等
    D.面积相等的两个三角形全等
    5.(3分)如果a>b,那么下列结论一定正确的是(  )
    A.a+3<b+3 B.< C.a+3>b+4 D.a﹣3>b﹣3
    6.(3分)下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是(  )
    A.两个角分别为13°,45° B.两个角分别为40°,45°
    C.两个角分别为45°,45° D.两个角分别为105°,45°
    7.(3分)在平面直角坐标系中,点A的坐标为(﹣1,3),点B的坐标为(4,3),则线段AB上任意一点的坐标可表示为(  )

    A.(x,3)(﹣1≤x≤4) B.(x,3)(x≤4)
    C.(x,3)(x≥﹣1) D.(x,3)
    8.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为(  )

    A.16 B.20 C.40 D.80
    9.(3分)已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且k+b>0,则函数y=kx+b的大致图象是(  )
    A. B.
    C. D.
    10.(3分)如图,M,A,N是直线l上的三点,AM=3,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是(  )

    A.直角三角形一等边三角形一直角三角形一等腰三角形
    B.直角三角形一等腰三角形一直角三角形一等边三角形
    C.等腰三角形一直角三角形一等腰三角形一直角三角形
    D.等腰三角形一直角三角形一等边三角形一直角三角形
    二、填空题(本大题有6小题,每小题3分,共18分。)
    11.(3分)用不等式表示“x的4倍小于3”为    .
    12.(3分)若点M(a﹣2,2a+3)是y轴上的点,则a的值为    .
    13.(3分)命题“直角三角形两锐角互余”的逆命题是:   .
    14.(3分)如图,△ABC中,∠ACB=90°,CD是AB边上的中线,且CD+AB=12,则AB的长为    .

    15.(3分)某种家用电器的进价为每件800元,以每件1200元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的    折出售.
    16.(3分)如图,一块木板把△ABC遮去了一部分,过点A的木板边沿恰好把△ABC分成两个等腰三角形,已知∠B=10°,且∠B是其中一个等腰三角形的底角,则△ABC中最大内角的度数为    .

    三、解答题(本大题有8小题,第17~18题每题5分,第19~22题每题6分,第23题8分,第24题10分,共52分、解答需写出必要的文字说明、演算步骤或证明过程。)
    17.以下是圆圆解不等式组的解答过程.
    解:由①,得2x﹣1>3,
    所以,x>2.
    由②,得1+x>5,
    所以,x>4.
    所以原不等式组的解为x>4.
    圆圆的解答过程是否正确?若不正确,写出正确的解答过程.
    18.如图,已知△ABC.
    (1)请用直尺和圆规作∠ABC的角平分线BD,交AC于点D.(保留作图痕迹,不写作法)
    (2)在(1)的条件下,若∠A=100°,∠C=28°,求∠BDA的度数.

    19.已知:如图,点A,F,E,B在同一直线上,∠ACE=∠BDF=90°,AC=DF,AF=BE.
    求证:∠A=∠BFD.

    20.如图,在平面直角坐标系xOy中,△A'B'C'是由△ABC平移得到,已知A',B',C'三点的坐标分别为(﹣1,1),(1,﹣3),(4,﹣1),点A的坐标为(﹣1,4).
    (1)画出△ABC.
    (2)描述△ABC到△A'B'C'的平移过程.
    (3)已知点P(0,b)为△ABC内的一点,求点P在△A'B'C'内的对应点P'的坐标.

    21.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点.
    (1)求一次函数的解析式,并在直角坐标系中画出其图象.
    (2)当y≤0时,求x的取值范围.

    22.如图,在三角形纸片ABC中,AC=6cm,BC=8cm,AB=10cm,折叠纸片使点B与点A重合,DE为折痕,将纸片展开铺平,连结AE.
    (1)判断△ABC的形状,并说明理由.
    (2)求AE的长.

    23.某通讯公司就手机流量套餐推出两种方案,如下表:

    A方案
    B方案
    每月基本费用(元)
    20
    50
    每月免费使用流量(兆)
    1024
    m
    超出后每兆收费(元)
    0.3
    0.3
    已知A,B两种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
    (1)请直接写出m的值.
    (2)在A方案中,当每月使用流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
    (3)小明的爸爸平均每月使用流量约2024兆,你认为他选择哪种方案较划算?说明理由.

    24.如图,∠ABC=90°,△ABE是等边三角形,点D是射线BC上的任意一点(不与点B重合),连结AD,以DA为边在DA边的右侧作等边三角形ADF,连结FE并延长交BC于点G.
    探究下列问题:
    (1)∠EBC=   °.
    (2)当A,E,D三点在同一直线上时,求∠EGD的度数.
    (3)当A,E,D三点不在同一直线上且点D,G不重合时,求∠EGD的度数.



    2021-2022学年浙江省绍兴市新昌县八年级(上)期末数学试卷
    参考答案与试题解析
    一、选择题(本大题有10小题,每小题3分,共30分。请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分。)
    1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(  )
    A. B. C. D.
    【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.
    【解答】解:A、是轴对称图形,故本选项正确;
    B、不是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:A.
    2.(3分)已知三角形的两边长分别为2和7,则该三角形的第三边长可以为(  )
    A.3 B.5 C.7 D.9
    【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边c的取值范围.
    【解答】解:设第三边为c,
    根据三角形的三边关系可得7﹣2<c<7+2,
    解得5<c<9,
    所以可能是7,
    故选:C.
    3.(3分)如图,△ABC中,AB=AC,D是BC的中点,∠BAC=50°,则∠BAD的度数为(  )

    A.25° B.50° C.65° D.100°
    【分析】根据已知的AB=AC得到三角形ABC为等腰三角形,再根据AD是BC边上的中线,利用等腰三角形“三线合一”的性质得到AD平分∠BAC,进而根据已知的∠BAC=50°,利用角平分线的定义即可求出∠BAD的度数.
    【解答】解:∵AB=AC,D是BC的中点,∠BAC=50°,
    ∴AD平分∠BAC,
    ∴∠BAD=∠BAC=×50°=25°.
    故选:A.
    4.(3分)下列命题中,正确的是(  )
    A.三条边对应相等的两个三角形全等
    B.周长相等的两个三角形全等
    C.三个角对应相等的两个三角形全等
    D.面积相等的两个三角形全等
    【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.
    【解答】解:A、根据全等三角形的判定定理SSS知,三条边对应相等的两个三角形全等.故本选项正确;
    B、全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故本选项错误;
    C、AAA不能判定这两个三角形全等;故本选项错误;
    D、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故本选项错误;
    故选:A.
    5.(3分)如果a>b,那么下列结论一定正确的是(  )
    A.a+3<b+3 B.< C.a+3>b+4 D.a﹣3>b﹣3
    【分析】根据不等式的性质逐个判断即可.
    【解答】解:A.∵a>b,
    ∴a+3>b+3,故本选项不符合题意;
    B.∵a>b,
    ∴,故本选项不符合题意;
    C.不妨设a=3,b=2,则a+3=b+2,
    故本选项不符合题意;
    D.∵a>b,
    ∴a﹣3>b﹣3,但是a2<b2,故本选项符合题意;
    故选:D.
    6.(3分)下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是(  )
    A.两个角分别为13°,45° B.两个角分别为40°,45°
    C.两个角分别为45°,45° D.两个角分别为105°,45°
    【分析】根据锐角的概念判断即可.
    【解答】解:当两个角分别为45°,45°时,这两个角都是锐角,和为90°,90°是直角,
    则命题“两个锐角的和是锐角”是假命题,
    故选:C.
    7.(3分)在平面直角坐标系中,点A的坐标为(﹣1,3),点B的坐标为(4,3),则线段AB上任意一点的坐标可表示为(  )

    A.(x,3)(﹣1≤x≤4) B.(x,3)(x≤4)
    C.(x,3)(x≥﹣1) D.(x,3)
    【分析】A、B两点纵坐标相等,即可确定AB与x轴平行.
    【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(4,3),A、B两点纵坐标都为3,
    ∴AB∥x轴,
    ∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤4),
    故选:A.
    8.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为(  )

    A.16 B.20 C.40 D.80
    【分析】过P作PE⊥BC于E,根据角平分线的性质得出PE=PA=PD,求出PE=PA=PD=AD=4,再根据三角形的面积公式求出答案即可.
    【解答】解:过P作PE⊥BC于E,

    ∵AB∥CD,
    ∴∠BAP+∠CDP=180°,
    ∵AD⊥AB,
    ∴∠BAP=90°,
    ∴∠CDP=90°,
    即AD⊥CD,
    ∵PE⊥BC,BP和CP分别平分∠ABC和∠BCD,
    ∴PA=PE,PE=PD,
    ∴PA=PD,
    ∵AD=8,
    ∴PE=PD=AP=4,
    ∵BC=10,
    ∴△BCP的面积为==20,
    故选:B.
    9.(3分)已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且k+b>0,则函数y=kx+b的大致图象是(  )
    A. B.
    C. D.
    【分析】根据一次函数的性质得到k<0,而k+b>0,则b>﹣k>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴上方.
    【解答】解:∵一次函数y=kx+b,y随着x的增大而减小,
    ∴k<0,
    ∴一次函数y=kx+b的图象经过第二、四象限;
    ∵k+b>0,
    ∴b>﹣k>0,
    ∴图象与y轴的交点在x轴上方,
    ∴一次函数y=kx+b的图象经过第一、二、四象限.
    故选:A.
    10.(3分)如图,M,A,N是直线l上的三点,AM=3,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是(  )

    A.直角三角形一等边三角形一直角三角形一等腰三角形
    B.直角三角形一等腰三角形一直角三角形一等边三角形
    C.等腰三角形一直角三角形一等腰三角形一直角三角形
    D.等腰三角形一直角三角形一等边三角形一直角三角形
    【分析】把点Q从点M出发,沿直线l向点N移动,移动到点N停止的整个过程,逐次考虑确定三角形的形状即可判断.
    【解答】解:当点Q移动到MQ=2,此时Q在A的左侧,且AQ=AP=1,△APQ是等腰三角形,
    当点Q移动到点A的右侧,且AQ=AP=时,△APQ是直角三角形,
    当点Q移动到点A的右侧,且AQ=AP=1时,△APQ是等边三角形,
    当点Q移动到点A的右侧,且AQ=2AP=2时,△APQ是直角三角形,
    ∴在△APQ形状的变化过程中,依次出现的特殊三角形是:等腰三角形一直角三角形一等边三角形一直角三角形,
    故选:D.
    二、填空题(本大题有6小题,每小题3分,共18分。)
    11.(3分)用不等式表示“x的4倍小于3”为  4x<3 .
    【分析】直接利用x的4倍即为4x,进而小于3得出不等式.
    【解答】解:由题意可得:4x<3.
    故答案为:4x<3.
    12.(3分)若点M(a﹣2,2a+3)是y轴上的点,则a的值为  2 .
    【分析】根据y轴上点的横坐标为0列方程求解即可.
    【解答】解:∵点M(a﹣2,2a+3)是y轴上的点,
    ∴a﹣2=0,
    解得a=2.
    故答案为:2.
    13.(3分)命题“直角三角形两锐角互余”的逆命题是: 如果三角形有两个锐角互余,那么这个三角形是直角三角形 .
    【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题.
    【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,
    所以逆命题是:“如果三角形有两个锐角互余,那么这个三角形是直角三角形”.
    故答案为:如果三角形有两个锐角互余,那么这个三角形是直角三角形.
    14.(3分)如图,△ABC中,∠ACB=90°,CD是AB边上的中线,且CD+AB=12,则AB的长为  8 .

    【分析】根据直角三角形的性质得到CD=AB,根据题意计算,得到答案.
    【解答】解:在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,
    则CD=AB,
    ∵CD+AB=12,
    ∴AB+AB=12,
    解得:AB=8,
    故答案为:8.
    15.(3分)某种家用电器的进价为每件800元,以每件1200元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的  七 折出售.
    【分析】设按标价的x折出售,利用利润=售价﹣进价,结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
    【解答】解:设按标价的x折出售,
    依题意得:1200×﹣800≥800×5%,
    解得:x≥7,
    ∴最低可按标价的七折出售.
    故答案为:七.
    16.(3分)如图,一块木板把△ABC遮去了一部分,过点A的木板边沿恰好把△ABC分成两个等腰三角形,已知∠B=10°,且∠B是其中一个等腰三角形的底角,则△ABC中最大内角的度数为  90°或140°或150° .

    【分析】先根据等腰三角形的性质和三角形外角的性质求出∠ADC,再分∠ADC是等腰△ADC的顶角和底角两种情况进行讨论即可求解.
    【解答】解:如图,
    ∵∠B=10°,△ADB是等腰三角形,
    ∴∠DAB=10°,
    ∴∠ADC=∠B+∠DAB=20°,
    ①∠ADC是等腰△ADC的顶角,
    则∠DAC=∠C=(180°﹣20°)÷2=80°,
    则△ABC中最大内角的度数为∠BAC=80°+10°=90°;
    ②∠ADC是等腰△ADC的底角,
    则∠DAC=∠ADC=20°,
    则∠C=180°﹣20°×2=140°,
    或∠C=∠ADC=20°,
    则∠DAC=180°﹣20°×2=140°,
    则∠BAC=140°+10°=150°.
    综上所述,△ABC中最大内角的度数为90°或140°或150°.
    故答案为:90°或140°或150°.

    三、解答题(本大题有8小题,第17~18题每题5分,第19~22题每题6分,第23题8分,第24题10分,共52分、解答需写出必要的文字说明、演算步骤或证明过程。)
    17.以下是圆圆解不等式组的解答过程.
    解:由①,得2x﹣1>3,
    所以,x>2.
    由②,得1+x>5,
    所以,x>4.
    所以原不等式组的解为x>4.
    圆圆的解答过程是否正确?若不正确,写出正确的解答过程.
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
    【解答】解:圆圆的解答过程不正确,
    解不等式①,得:x>2.5,
    解不等式②,得:x<4,
    则不等式组的解集为2.5<x<4.
    18.如图,已知△ABC.
    (1)请用直尺和圆规作∠ABC的角平分线BD,交AC于点D.(保留作图痕迹,不写作法)
    (2)在(1)的条件下,若∠A=100°,∠C=28°,求∠BDA的度数.

    【分析】(1)根据角平分线的尺规作图求解即可;
    (2)先根据三角形内角和定理求出∠ABC度数,再由角平分线的性质得出∠DBC,最后由三角形外角的性质可得答案.
    【解答】解:(1)如图所示,BD即为所求.

    (2)∵∠A=100°,∠C=28°,
    ∴∠ABC=180°﹣∠A﹣∠C=52°,
    ∵BD平分∠ABC,
    ∴∠DBC=26°,
    ∴∠BDA=∠DBC+∠C=54°.
    19.已知:如图,点A,F,E,B在同一直线上,∠ACE=∠BDF=90°,AC=DF,AF=BE.
    求证:∠A=∠BFD.

    【分析】由“HL”可证Rt△ACE≌Rt△FDB,可得∠A=∠BFD.
    【解答】证明:∵AF=BE,
    ∴AF+EF=BE+EF,
    ∴AE=BF,
    在Rt△ACE和Rt△FDB中,

    ∴Rt△ACE≌Rt△FDB(HL),
    ∴∠A=∠BFD.
    20.如图,在平面直角坐标系xOy中,△A'B'C'是由△ABC平移得到,已知A',B',C'三点的坐标分别为(﹣1,1),(1,﹣3),(4,﹣1),点A的坐标为(﹣1,4).
    (1)画出△ABC.
    (2)描述△ABC到△A'B'C'的平移过程.
    (3)已知点P(0,b)为△ABC内的一点,求点P在△A'B'C'内的对应点P'的坐标.

    【分析】(1)根据A',B',C'三点的坐标分别为(﹣1,1),(1,﹣3),(4,﹣1),点A的坐标为(﹣1,4).即可画出△ABC;
    (2)根据平移的性质即可描述△ABC到△A'B'C'的平移过程;
    (3)结合(2)即可得点P在△A'B'C'内的对应点P'的坐标.
    【解答】解:(1)如图,△ABC即为所求;

    (2)△ABC向下平移3个单位长度得△A′B′C′;
    (3)∵△ABC向下平移3个单位长度得△A′B′C′,P(0,b),
    ∴对应点P'的坐标为(0,b﹣3).
    21.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点.
    (1)求一次函数的解析式,并在直角坐标系中画出其图象.
    (2)当y≤0时,求x的取值范围.

    【分析】(1)先利用待定系数法求一次函数解析式,然后两点确定一条直线画出一次函数图象;
    (2)通过解不等式2x+2≤0得到x的范围.
    【解答】解:(1)把A(﹣2,﹣2),B(1,4)分别代入y=kx+b得,
    解得,
    ∴一次函数解析式为y=2x+2;
    一次函数y=2x+2的图象为:

    (2)∵y≤0,
    ∴2x+2≤0,
    解得x≤﹣1,
    ∴当y≤0时,x的取值范围为x≤﹣1.
    22.如图,在三角形纸片ABC中,AC=6cm,BC=8cm,AB=10cm,折叠纸片使点B与点A重合,DE为折痕,将纸片展开铺平,连结AE.
    (1)判断△ABC的形状,并说明理由.
    (2)求AE的长.

    【分析】(1)根据勾股定理的逆定理即可解决问题;
    (2)根据折叠可得AE=BE,设AE=BE=x,则CE=8﹣x,然后根据勾股定理即可解决问题.
    【解答】解:(1)△ABC是直角三角形,理由如下:
    ∵AC=6cm,BC=8cm,AB=10cm,
    ∴AC2+BC2=62+82=102=AB2,
    ∴△ABC是直角三角形;
    (2)根据折叠可知:AE=BE,
    设AE=BE=xcm,
    则CE=(8﹣x)cm,
    在Rt△ACE中,根据勾股定理,得
    62+(8﹣x)2=x2,
    解得x=,
    ∴AE=cm.
    23.某通讯公司就手机流量套餐推出两种方案,如下表:

    A方案
    B方案
    每月基本费用(元)
    20
    50
    每月免费使用流量(兆)
    1024
    m
    超出后每兆收费(元)
    0.3
    0.3
    已知A,B两种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
    (1)请直接写出m的值.
    (2)在A方案中,当每月使用流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
    (3)小明的爸爸平均每月使用流量约2024兆,你认为他选择哪种方案较划算?说明理由.

    【分析】(1)根据题意,结合图象可得m=3072;
    (2)利用待定系数法解答即可;
    (3)根据题意,求出每月使用流量约2024兆,选择A,B两种方案每月所需的费用即可.
    【解答】解:(1)根据题意,m=3072;
    (2)设在A方案中,当每月使用的流量不少于1024兆时,每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式为y=kx+b(k≠0),
    把(1024,20),(1124,50)代入,得:

    解得,
    ∴y关于x的函数关系式为y=0.3x﹣287.2(x≥1024);
    (3)他选择B方案较划算.理由如下:
    选择A方案每月所需的费用:20+0.3×(2024﹣1024)=320(元),
    选择B方案每月所需的费用:50(元),
    320>50,
    ∴他选择B方案较划算.
    24.如图,∠ABC=90°,△ABE是等边三角形,点D是射线BC上的任意一点(不与点B重合),连结AD,以DA为边在DA边的右侧作等边三角形ADF,连结FE并延长交BC于点G.
    探究下列问题:
    (1)∠EBC= 30 °.
    (2)当A,E,D三点在同一直线上时,求∠EGD的度数.
    (3)当A,E,D三点不在同一直线上且点D,G不重合时,求∠EGD的度数.


    【分析】(1)由等边三角形的性质和直角三角形的性质可求解;
    (2)由等边三角形的性质和直角三角形的性质可求AB=AE=DE=BE,即可求解;
    (3)分两种情况讨论,由全等三角形的性质和等边三角形的性质可求解.
    【解答】解:(1)∵△ABE是等边三角形,
    ∴∠ABE=60°,
    ∵∠ABC=90°,
    ∴∠EBC=30°
    故答案为:30;
    (2)当A,E,D三点在同一直线上时,如图1,

    ∵△ABE是等边三角形,
    ∴AB=AE=BE,∠BAD=∠ABE=60°,
    ∴∠ADB=∠EBD=30°,
    ∴BE=DE=AE,
    又∵△ADF是等边三角形,
    ∴FG⊥AD,
    ∴∠FGD=60°;
    (3)当BD>AB时,如图2或3,

    如图2,∵△ADF为等边三角形,
    ∴AD=AF,∠DAF=60°,
    ∵△EBA是等边三角形,
    ∴EA=AB,∠EAB=60°=∠FAD,
    ∴∠BAD=∠EAF,
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴∠AEF=∠ABD=90°,
    ∴∠BGE=360°﹣∠ABD﹣∠AEG﹣∠BAE=360°﹣90°﹣90°﹣60°=120°,
    ∴∠EGD=60°,
    如图3,∵∠BAE=∠DAF=60°,
    ∴∠BAD=∠EAF.
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴∠AEF=∠ABD=90°,
    ∴∠BGE=360°﹣∠ABD﹣∠AEG﹣∠BAE=360°﹣90°﹣90°﹣60°=120°,
    ∴∠EGD=60°,
    当BD<AB时,

    如图4,∵∠BAE=∠DAF=60°,
    ∴∠BAD=∠EAF.
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴∠AEF=∠ABD=90°,
    ∴∠BGE=360°﹣∠ABD﹣∠AEG﹣∠BAE=360°﹣90°﹣90°﹣60°=120°,
    ∴∠EGD=120°,
    综上所述:∠EGD=60°或120°.


    相关试卷

    浙江省绍兴市新昌县2023-2024学年八年级(上)学期期末数学试卷(含解析): 这是一份浙江省绍兴市新昌县2023-2024学年八年级(上)学期期末数学试卷(含解析),共20页。

    2023-2024学年浙江省绍兴市新昌县城关中学九年级(上)开学数学试卷(含解析): 这是一份2023-2024学年浙江省绍兴市新昌县城关中学九年级(上)开学数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022-2023学年浙江省绍兴市新昌县八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年浙江省绍兴市新昌县八年级(下)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map