终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析冀教版八年级数学下册第二十二章四边形章节测试练习题(精选含解析)

    立即下载
    加入资料篮
    2022年精品解析冀教版八年级数学下册第二十二章四边形章节测试练习题(精选含解析)第1页
    2022年精品解析冀教版八年级数学下册第二十二章四边形章节测试练习题(精选含解析)第2页
    2022年精品解析冀教版八年级数学下册第二十二章四边形章节测试练习题(精选含解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题,共33页。试卷主要包含了下列说法正确的是,如图,已知矩形ABCD中,R等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
    其中说法正确的是( )
    A.②③B.①②③C.②④D.①②④
    2、下列命题错误的是( )
    A.两组对边分别平行的四边形是平行四边形
    B.两组对边分别相等的四边形是平行四边形
    C.一组对边平行,另一组对边相等的四边形是平行四边形
    D.对角线互相平分的四边形是平行四边形
    3、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
    A.1B.C.D.
    4、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )
    A.1个B.2个C.3个D.4个
    5、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )
    A.5B.6C.8D.10
    6、下列说法正确的是( )
    A.只有正多边形的外角和为360°
    B.任意两边对应相等的两个直角三角形全等
    C.等腰三角形有两条对称轴
    D.如果两个三角形一模一样,那么它们形成了轴对称图形
    7、能够判断一个四边形是矩形的条件是( )
    A.对角线相等B.对角线垂直
    C.对角线互相平分且相等D.对角线垂直且相等
    8、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
    A.线段EF的长逐渐增大B.线段EF的长逐渐减小
    C.线段EF的长不改变D.线段EF的长不能确定
    9、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.
    ①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.
    A.1B.3C.4D.5
    10、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )
    A.20B.40C.60D.80
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下3个结论:①△ADG≌△FDG;②GB=2AG;③S△BEF=.在以上3个结论中,正确的有______.(填序号)
    2、如图,将长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,HE与AD交于点P,连接HF,当,时,则P到HF的距离是______.
    3、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
    4、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    5、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.
    2、如图,直线,线段分别与直线、交于点、点,满足.
    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____
    ∴四边形是___④_____
    ∴四边形是菱形(______⑤__________)(填推理的依据).
    3、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    4、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
    5、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点
    (1)求证:四边形BDEG是平行四边形;
    (2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
    【详解】
    如图所示,
    ∵△ABC是直角三角形,
    ∴根据勾股定理:,故①正确;
    由图可知,故②正确;
    由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
    列出等式为,
    即,故③正确;
    由可得,
    又∵,
    两式相加得:,
    整理得:,
    ,故④错误;
    故正确的是①②③.
    故答案选B.
    【点睛】
    本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
    2、C
    【解析】
    【分析】
    根据平行四边形的判定逐项分析即可得.
    【详解】
    解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;
    B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;
    C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;
    D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,
    故选:C.
    【点睛】
    本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.
    3、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    4、A
    【解析】
    【分析】
    利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
    【详解】
    解:∵AB=3,AC=4,32+42=52,
    ∴AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴AB⊥AC,故①正确;
    ∵△ABD,△ACE都是等边三角形,
    ∴∠DAB=∠EAC=60°,
    ∴∠DAE=150°,
    ∵△ABD和△FBC都是等边三角形,
    ∴BD=BA,BF=BC,
    ∴∠DBF=∠ABC,
    在△ABC与△DBF中,

    ∴△ABC≌△DBF(SAS),
    ∴AC=DF=AE=4,
    同理可证:△ABC≌△EFC(SAS),
    ∴AB=EF=AD=3,
    ∴四边形AEFD是平行四边形,故②正确;
    ∴∠DFE=∠DAE=150°,故③正确;
    过A作AG⊥DF于G,如图所示:
    则∠AGD=90°,
    ∵四边形AEFD是平行四边形,
    ∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
    ∴AG=AD=,
    ∴S▱AEFD=DF•AG=4×=6;故④错误;
    ∴错误的个数是1个,
    故选:A.

    【点睛】
    此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
    5、A
    【解析】
    【分析】
    先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    【详解】
    解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
    ∴每个外角是:180°−108°=72°,
    ∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
    故选:A.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
    6、B
    【解析】
    【分析】
    选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
    【详解】
    解:A.所有多边形的外角和为,故本选项不合题意;
    B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
    C.等腰三角形有1条对称轴,故本选项不合题意;
    D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
    故选:B.
    【点睛】
    此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
    7、C
    【解析】

    8、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据中位线定理,EF不变.
    【详解】
    解:连接AR.
    因为E、F分别是AP、RP的中点,
    则EF为的中位线,
    所以,为定值.
    所以线段的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    9、C
    【解析】
    【分析】
    证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.
    【详解】
    解:∵BH⊥AE,AF⊥BC,AE⊥EM,
    ∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
    ∴∠NBF=∠EAF=∠MEC,
    在△NBF和△EAF中,,
    ∴△NBF≌△EAF(AAS);
    ∴BF=AF,NF=EF,
    ∴∠ABC=45°,∠ENF=45°,
    ∴△NFE是等腰直角三角形,故③正确;
    ∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,
    ∴∠ANB=∠CEA,
    在△ANB和△CEA中,,
    ∴△ANB≌△CEA(SAS),故①正确;
    ∵AN=CE,NF=EF,
    ∴BF=AF=FC,
    又∵AF⊥BC,∠ABC=45°,
    ∴△ABC是等腰直角三角形,故②正确;
    在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,
    ∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,
    ∴∠ANE=∠BCD=135°,
    在△ANE和△ECM中,,
    ∴△ANE≌△ECM(ASA),故④正确;
    ∴CM=NE,
    又∵NF=NE=MC,
    ∴AF=MC+EC,
    ∴AD=BC=2AF=MC+2EC,故⑤错误.
    综上,①②③④正确,共4个,
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    10、B
    【解析】
    【分析】
    根据菱形的面积公式求解即可.
    【详解】
    解:这个菱形的面积=×10×8=40.
    故选:B.
    【点睛】
    本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.
    二、填空题
    1、①②③
    【解析】
    【分析】
    根据正方形的性质和折叠的性质可得,,于是根据“”判定,再由,,为直角三角形,可通过勾股定理列方程求出,,进而求出的面积.
    【详解】
    解:由折叠可知,,,,

    在和中,

    ,故①正确;

    正方形边长是12,

    设,则,,
    由勾股定理得:,
    即:,
    解得:
    ,,,故②正确;
    ,,故③正确;
    故答案为:①②③.
    【点睛】
    本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用这些性质解决问题.
    2、156161
    【解析】
    【分析】
    连接FC,过点H作HQ⊥AF,过点P作PM⊥HF,线段PM长度即为所求,根据折叠及矩形的性质可得∆ABE≅∆AHE,∆FDC≅∆FGH,∠AHE=∠B=90°,∠EHG=∠DCE=90°,∠G=∠D=90°,BC=AD=18,由全等三角形及平行线的判定得出AH=AB=6,CD=HG=6,HP∥GF,点A、H、G三点共线,且,点H为AG中点,设FD=x,则,AF=18-x,利用勾股定理可得,,由三角形中位线的判定及性质可得HP=52,AP=PF=132,最后在两个三角形Rt∆HGF与∆HPF中,利用等面积法求解即可得.
    【详解】
    解:如图所示:连接FC,过点H作HQ⊥AF,过点P作PM⊥HF,线段PM长度即为所求,
    ∵长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,
    ∴∆ABE≅∆AHE,∆FDC≅∆FGH,∠AHE=∠B=90°,∠EHG=∠DCE=90°,∠G=∠D=90°,BC=AD=18,
    ∴AH=AB=6,CD=HG=6,HP∥GF,
    ∴点A、H、G三点共线,且AG=AH+HG=12,点H为AG中点,
    设FD=x,则,AF=18-x,
    在中,
    AG2+GF2=AF2,
    即122+x2=(18-x)2,
    解得:,
    ∴,,
    ∵HP∥GF且点H为AG中点,
    ∴HP为中位线,
    ∴HP=12GF=52,AP=PF=12AF=132,
    在Rt∆HGF中,
    HF=HG2+GF2=61,
    S∆APH=12·AH·HP=12·AP·HQ,即12×6×52=12×132×HQ,
    ∴HQ=3013,
    ∴S∆HPF=12·PF·HQ=12·HF·PM,即12×132×3013=12×61×PM,
    解得:PM=156161,
    故答案为:156161.
    【点睛】
    题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    3、6
    【解析】
    【分析】
    先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
    【详解】
    ∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=60°,
    ∴边数n=360°÷60°=6.
    故答案为:6.
    【点睛】
    此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
    4、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.
    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    5、五
    【解析】
    【分析】
    根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
    【详解】
    解:设这是个n边形,由题意得
    n-2=3,
    ∴n=5,
    故答案为:五.
    【点睛】
    本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
    三、解答题
    1、见解析
    【解析】
    【分析】
    根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴∠BAE=∠CFE;
    ∵E为BC中点,
    ∴EB=EC,
    在△ABE与△FCE中,

    ∴△ABE≌△FCE(AAS),
    ∴AB=CF,
    ∴DC=CF.
    【点睛】
    本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
    2、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示
    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    3、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;
    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;
    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;
    (3)
    解:如图3-1所示,连接AF,
    ∴,
    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    4、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;
    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,
    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;
    (3)
    解:过点D作DG∥BN交AC于点G,
    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
    5、 (1)证明见解析
    (2)10
    【解析】
    【分析】
    (1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
    (2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
    (1)
    证明:∵AC平分∠BAD,AB∥CD,
    ∴∠DAC=∠BAC,∠DCA=∠BAC,
    ∴∠DAC=∠DCA,
    ∴AD=DC,
    又∵AB∥CD,AB=AD,
    ∴AB∥CD且AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形.
    (2)
    解:连接BD,交AC于点O,如图:
    ∵菱形ABCD的边长为13,对角线AC=24,
    ∴CD=13,AO=CO=12,
    ∵点E、F分别是边CD、BC的中点,
    ∴EF∥BD(中位线),
    ∵AC、BD是菱形的对角线,
    ∴AC⊥BD,OB=OD,
    又∵AB∥CD,EF∥BD,
    ∴DE∥BG,BD∥EG,
    ∵四边形BDEG是平行四边形,
    ∴BD=EG,
    在△COD中,
    ∵OC⊥OD,CD=13,CO=12,
    ∴,
    ∴EG=BD=10.
    【点睛】
    本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.

    相关试卷

    2021学年第二十二章 四边形综合与测试优秀综合训练题:

    这是一份2021学年第二十二章 四边形综合与测试优秀综合训练题,共31页。

    冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共26页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品精练:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品精练,共27页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map