![2022年最新冀教版八年级数学下册第二十二章四边形专项训练试题(含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12735084/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项训练试题(含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12735084/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项训练试题(含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12735084/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题,共30页。试卷主要包含了下列命题不正确的是,下列说法错误的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
A.3cm B.4cm C.4.8cm D.5cm
2、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是( )
A.360° B.900° C.1440° D.1800°
3、十边形中过其中一个顶点有( )条对角线.
A.7 B.8 C.9 D.10
4、下列命题不正确的是( )
A.三边对应相等的两三角形全等
B.若,则
C.有一组对边平行、另一组对边相等的四边形是平行四边形
D.的三边为a、b、c,若,则是直角三角形.
5、一个多边形的每个内角均为150°,则这个多边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
6、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
7、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
8、下列说法错误的是( )
A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角
C.矩形的对角线互相垂直 D.正方形有四条对称轴
9、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为( )
A.1 B.2 C.3 D.4
10、若n边形每个内角都为156°,那么n等于( )
A.8 B.12 C.15 D.16
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点M,N分别是的边AB,AC的中点,若,,则______.
2、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.
4、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.
5、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.
① ②BG垂直平分DE ③ ④ ⑤
三、解答题(5小题,每小题10分,共计50分)
1、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.
(1)求证AE=EC;
(2)求阴影部分的面积.
2、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
3、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
4、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.
(1)求证:四边形ABCD是矩形;
(2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
5、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点
(1)求证:四边形BDEG是平行四边形;
(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
【详解】
解:∵四边形ABCD是菱形,
∴BD⊥AC,
∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
∴AC=8cm,
∵AE⊥BC,
∴∠AEC=90°,
∴OE=AC=4cm,
故选:B.
【点睛】
本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
2、C
【解析】
【分析】
设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
【详解】
解:设每一个外角都为x,则相邻的内角为4x,
由题意得,4x+x=180°,
解得:x=36°,
多边形的外角和为360°,
360°÷36°=10,
所以这个多边形的边数为10,
则该多边形的内角和是:(10﹣8)×180=1440°.
故选:C.
【点睛】
本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
3、A
【解析】
【分析】
根据多边形对角线公式解答.
【详解】
解:十边形中过其中一个顶点有10-3=7条对角线,
故选:A.
【点睛】
此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.
4、C
【解析】
【分析】
根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
【详解】
解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
B、若,则,此命题正确,不符题意;
C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
故选:C.
【点睛】
本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
5、D
【解析】
【分析】
先求出多边形的外角度数,然后即可求出边数.
【详解】
解:∵多边形的每个内角都等于150°,
∴多边形的每个外角都等于180°-150°=30°,
∴边数n=360°÷30°=12,
故选:D.
【点睛】
本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
6、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
7、A
【解析】
【分析】
根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
【详解】
解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
D、有三个角是直角的四边形是矩形,所以该选项不正确.
故选:A.
【点睛】
本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
8、C
【解析】
【分析】
根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.
【详解】
解:A、平行四边形对边平行且相等,正确,不符合题意;
B、菱形的对角线平分一组对角,正确,不符合题意;
C、矩形的对角线相等,不正确,符合题意;
D、正方形有四条对称轴,正确,不符合题意;
故选:C.
【点睛】
本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.
9、B
【解析】
【分析】
先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.
【详解】
解:,
,
,
(等腰三角形的三线合一),
即点是的中点,
为的中点,
是的中位线,
,
故选:B.
【点睛】
本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.
10、C
【解析】
【分析】
首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
【详解】
解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
则n=360°÷24°=15.
故选:C.
【点睛】
本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
二、填空题
1、45°##45度
【解析】
【分析】
根据三角形中位线定理得出,进而利用平行线的性质解答即可.
【详解】
解:、分别是的边、的中点,
,
,
,,
,
,
故答案是:.
【点睛】
本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.
2、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
3、3
【解析】
【分析】
由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
【详解】
解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,
∵正方形ABCD边长为6,O为正方形中心,
∴AE=3,∠OAE=45°,OE⊥AB,
∴OE=3,
∵OP=6,
∴d=PE=6-3=3;
故答案为:3
【点睛】
本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
4、4+2
【解析】
【分析】
取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
【详解】
解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,
∵四边形ABCD为菱形,
∴AB=AD,
∵∠BAD=120°,
∴∠CAD=60°,
∴△ACD为等边三角形,
又∵DE=DG,
∴△DEG也为等边三角形.
∴DE=GE,
∵∠DEG=60°=∠FEF',
∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
即∠DEF=∠GEF',
由线段EF绕着点E顺时针旋转60°得到线段EF',
所以EF=EF'.
在△DEF和△GEF'中,
,
∴△DEF≌△GEF'(SAS).
∴∠EGF'=∠EDF=60°,
∴∠F'GA=180°﹣60°﹣60°=60°,
则点F'的运动轨迹为射线GF'.
观察图形,可得A,E关于GF'对称,
∴AF'=EF',
∴BF'+AF'=BF'+EF'≥BE,
在Rt△BCH中,
∵∠H=90°,BC=4,∠BCH=60°,
∴,
在Rt△BEH中,BE===2,
∴BF'+EF'≥2,
∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
故答案为:4+2.
【点睛】
本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
5、①②⑤
【解析】
【分析】
先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.
【详解】
解:∵∠ACB=90°,BE⊥AB,AC=BC,
∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,
∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,
∵AF平分∠BAC,
∴∠BAE=∠DAC=22.5°,
∴∠BEA=∠ADC,
又∵∠ADC=∠BDE,
∴∠BDE=∠BED,
∴BD=ED,
又∵M是DE的中点,
∴BM⊥DE,∠GBE=∠DBG,
∴BG垂直平分DE,∠AMG=90°,故②正确,
∴∠MAG+∠MGA=90°,
∵∠CBG+∠CGB=90°,
∴∠DAC=∠GBC=22.5°,
∴∠GBE=22.5°,
∴2∠GBE=45°,
又∵AC=BC,
∴△ACD≌△BCG(ASA),故①正确;
∴CD=CG,
∵AC=BC=BD+CD,
∴AC=BE+CG,故⑤正确;
∵∠G=180°-∠BCG-∠CBG=67.5°,
∴∠G≠2∠GBE,故④错误;
如图所示,延长BE交AC延长线于G,
∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,
∴△ABH是等腰直角三角形,
∵BC⊥AH,
∴C为AH的中点,
∵AB≠AH,AF是∠BAH的角平分线,
∴BE≠HE,即E不是BH的中点,
∴CE不是△ABH的中位线,
∴CE与AB不平行,
∴BE与CE不垂直,故③错误;
故答案为:①②⑤.
【点睛】
本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.
三、解答题
1、 (1)证明见解析
(2)
【解析】
【分析】
(1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;
(2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.
(1)
证明:由折叠的性质得:,
四边形是长方形,
,
,
,
.
(2)
解:四边形是长方形,
,
设,则,
在中,,即,
解得,
即,
则阴影部分的面积为.
【点睛】
本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.
2、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
3、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
4、 (1)见解析
(2)AD=2AB,理由见解析
【解析】
【分析】
(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
(1)
证明:∵点M是AD边的中点,
∴AM=DM,
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SSS),
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=90°,
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)
解:AD与AB之间的数量关系:AD=2AB,理由如下:
∵△BCM是直角三角形,BM=CM,
∴△BCM是等腰直角三角形,
∴∠MBC=45°,
由(1)得:四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠AMB=∠MBC=45°,
∴△ABM是等腰直角三角形,
∴AB=AM,
∵点M是AD边的中点,
∴AD=2AM,
∴AD=2AB.
【点睛】
本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
5、 (1)证明见解析
(2)10
【解析】
【分析】
(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
(1)
证明:∵AC平分∠BAD,AB∥CD,
∴∠DAC=∠BAC,∠DCA=∠BAC,
∴∠DAC=∠DCA,
∴AD=DC,
又∵AB∥CD,AB=AD,
∴AB∥CD且AB=CD,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形.
(2)
解:连接BD,交AC于点O,如图:
∵菱形ABCD的边长为13,对角线AC=24,
∴CD=13,AO=CO=12,
∵点E、F分别是边CD、BC的中点,
∴EF∥BD(中位线),
∵AC、BD是菱形的对角线,
∴AC⊥BD,OB=OD,
又∵AB∥CD,EF∥BD,
∴DE∥BG,BD∥EG,
∵四边形BDEG是平行四边形,
∴BD=EG,
在△COD中,
∵OC⊥OD,CD=13,CO=12,
∴,
∴EG=BD=10.
【点睛】
本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题,共24页。试卷主要包含了下列说法错误的是,如图,在正方形ABCD中,点E,如图,正方形的边长为,对角线等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业,共24页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀练习题,共29页。