2020-2021学年第29章 直线与圆的位置关系综合与测试精品同步测试题
展开
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品同步测试题,共32页。试卷主要包含了已知M等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
2、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )
A.2,2 B.4,4 C.4,2 D.4,
3、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
4、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )
A.1 B. C. D.
5、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
6、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
7、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
8、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
9、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
10、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,,是内切圆,则的半径为______.
2、如图,是的直径,是的切线,切点为,交于点,点是的中点.若的半径为,,,则阴影部分的面积为________.
3、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
4、边长为2的正三角形的外接圆的半径等于___.
5、如图,在△ABC中,AB=AC=,BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _____.(结果保留π)
三、解答题(5小题,每小题10分,共计50分)
1、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
2、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
3、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.
(1)小明给出下列解答,请你补全小明的解答.
小明的解答
过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴ .
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 ,
∴ .
(2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
(3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
4、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
5、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:
(1)如图1,当与相切于点时,求的长;
(2)如图2,当与相切时,
①求的长;
②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、B
【解析】
【分析】
根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
【详解】
解:如图,
∵正六边形的任一内角为120°,
∴∠ABD=180°-120°=60°,
∴∠BAD=30°,为等边三角形,
∵
∴
∴
∴
∴这个正六边形半径R和扳手的开口a的值分别是4,4.
故选:B.
【点睛】
本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
3、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
4、C
【解析】
【分析】
根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
【详解】
如图,过点O作OG⊥AF,垂足为G,
∵正六边形的边心距为,
∴∠AOG=30°,OG=,
∴OA=2AG,
∴,
解得GA=1,
∴OA=2,
设圆锥的半径为r,根据题意,得2πr=,
解得r=,
故选C.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
5、C
【解析】
【分析】
先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
【详解】
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
故选:C.
【点睛】
本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
6、B
【解析】
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
7、D
【解析】
【分析】
根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
【详解】
解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于
设半径为r,即OA=OB=AB=r,
OM=OA•sin∠OAB=,
∵圆O的内接正六边形的面积为(cm2),
∴△AOB的面积为(cm2),
即,
,
解得r=4,
故选:D.
【点睛】
本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
8、A
【解析】
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
9、A
【解析】
【分析】
直接根据点与圆的位置关系进行解答即可.
【详解】
解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
∴点P在圆内.
故选:A.
【点睛】
本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
10、B
【解析】
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
二、填空题
1、1
【解析】
【分析】
根据三角形内切圆与内心的性质和三角形面积公式解答即可.
【详解】
解:∵∠C=90°,AC=3,AB=5,
∴BC==4,
如图,分别连接OA、OB、OC、OD、OE、OF,
∵⊙O是△ABC内切圆,D、E、F为切点,
∴OD⊥BC,OE⊥AC,OF⊥AB于D、E、F,OD=OE=OF,
∴S△ABC=S△BOC+S△AOC+S△AOB=BC•DO+AC•OE+AB•FO=(BC+AC+AB)•OD,
∵∠ACB=90°,
∴,
∴.
故答案为:1.
【点睛】
此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.
2、
【解析】
【分析】
根据题意先得出△AOE≌△DOE,进而计算出∠AOD=2∠B=100°,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积.
【详解】
解:连接EO、DO,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠AOE=∠B,∠EOD=∠BDO,
∵OB=OD,
∴∠B=∠BDO,
∴∠AOE =∠EOD,
在△AOE和△DOE中
,
∴△AOE≌△DOE,
∵点E是AC的中点,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=2•×2×2.4-=.
故答案为:.
【点睛】
本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
3、 直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
【解析】
【分析】
连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
【详解】
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上,
∴∠OAP=90°(直径所对的圆周角是直角),
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
同理可证直线PB是⊙O的切线,
故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.
4、
【解析】
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
5、##
【解析】
【分析】
先判断出△ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可.
【详解】
解:∵AB=AC=,BC=2,
∴AB2+AC2=BC2,
∴△ABC是等腰直角三角形,
∴∠BAC=90°,
连接AD,则AD=BC=1,
则S扇形AEF=.
故答案为:.
【点睛】
本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
2、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
3、 (1)OP+PQ>ON; OP=OM;PQ>MN
(2)见解析
(3)1<r<4
【解析】
【分析】
(1)利用两点之间线段最短解答即可;
(2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
(3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
(1)
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴OP+PQ>ON.
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 OP=OM,
∴PQ>MN.
故答案为:OP+PQ>ON, OP=OM,PQ>MN;
(2)
解:如图,
⊙O是求作的图形;
(3)
(3)如图2,
作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
∴∠FEO′=∠AFE=90°,
∴AF∥EO′,
∴∠AEO′=∠BAC=60°,
∵AO′=EO′,
∴△ADO′是等边三角形,
∴AE=AO′,
∵AB=8,∠B=30°,
∴AC=AB=4,
∴AF=2,
∴⊙O的半径是1,
∴AE=AB=4,
∴1<r<4,
故答案是:1<r<4.
【点睛】
本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
4、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
5、 (1)BP=2
(2)①4.8;②9.6
【解析】
【分析】
(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
(1)
连接PT,如图:
∵⊙P与AD相切于点T,
∴∠ATP=90°,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴四边形ABPT是矩形,
∴PT=AB=4=PE,
∵E是AB的中点,
∴BE=AB=2,
在Rt△BPE中,;
(2)
①∵⊙P与CD相切,
∴PC=PE,
设BP=x,则PC=PE=10-x,
在Rt△BPE中,BP2+BE2=PE2,
∴x2+22=(10-x)2,
解得x=4.8,
∴BP=4.8;
②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:
由题可知,EM是△ABQ的中位线,
∴EM∥BQ,
∴∠BEM=90°=∠B,
∵PN⊥EM,
∴∠PNE=90°,EM=2EN,
∴四边形BPNE是矩形,
∴EN=BP=4.8,
∴EM=2EN=9.6.
故答案为:9.6.
【点睛】
本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共31页。试卷主要包含了如图,A等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题,共29页。试卷主要包含了已知⊙O的半径为4,,则点A在,在平面直角坐标系中,以点等内容,欢迎下载使用。
这是一份数学第29章 直线与圆的位置关系综合与测试精品课后复习题,共29页。试卷主要包含了如图,,以半径为1的圆的内接正三角形等内容,欢迎下载使用。