冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题
展开
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题,共30页。试卷主要包含了如图,PA,将一把直尺等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
2、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )
A.18° B.28° C.36° D.45°
3、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )
A.点O在⊙A内 B.点O在⊙A外
C.点O在⊙A上 D.以上都有可能
4、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
5、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )
A.1 B. C. D.
6、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
7、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6 B. C.3 D.
8、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是( )
A. B. C.5 D.5
9、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
10、一个正多边形的半径与边长相等,则这个正多边形的边数为( )
A.4 B.5 C.6 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.
2、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.
3、两直角边分别为6、8,那么的内接圆的半径为____________.
4、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.
5、已知五边形是的内接正五边形,则的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留).
2、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
3、如图,PA,PB是圆的切线,A,B为切点.
(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
4、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8,AE=6,求⊙O的半径.
5、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
-参考答案-
一、单选题
1、A
【解析】
【分析】
已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
【详解】
∵⊙O的半径为3,若PO=2,
∴2<3,
∴点P与⊙O的位置关系是点P在⊙O内,
故选:A.
【点睛】
本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
2、A
【解析】
【分析】
连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
【详解】
解:如图,连接
,
是的切线
故选A
【点睛】
本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
3、B
【解析】
【分析】
本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.
【详解】
解:∵点A(﹣4,﹣3),
∴,
∵⊙A的半径为4,
∴,
∴点O在⊙A外;
故选:B
【点睛】
本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
4、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
5、C
【解析】
【分析】
根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
【详解】
如图,过点O作OG⊥AF,垂足为G,
∵正六边形的边心距为,
∴∠AOG=30°,OG=,
∴OA=2AG,
∴,
解得GA=1,
∴OA=2,
设圆锥的半径为r,根据题意,得2πr=,
解得r=,
故选C.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
6、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
7、D
【解析】
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
8、C
【解析】
【分析】
先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.
【详解】
解:∵PA,PB为⊙O的切线,
∴PA=PB,
∵∠APB=60°,
∴△APB为等边三角形,
∴AB=PA=5.
故选:C.
【点睛】
本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
9、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
10、C
【解析】
【分析】
如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
【详解】
解:如图,由题意得:,
是等边三角形,
,
则这个正多边形的边数为,
故选:C.
【点睛】
本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
二、填空题
1、10
【解析】
【分析】
先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.
【详解】
∵AB,BC,CD分别与⊙O相切于点E、F、G三点,
∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,
∴,,
∴,
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴,
∴∠BOC=90°,
在Rt△OBC中,∵BO=6,CO=8,
∴,
∴BE+CG=10.
故答案为:10.
【点睛】
此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.
2、70°##70度
【解析】
【分析】
连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
【详解】
解:连接OA、OB,
∵PA,PB分别切⊙O于点A,B,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠Q=∠AOB=70°,
故答案为:70°.
【点睛】
本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
3、5
【解析】
【分析】
直角三角形外接圆的直径是斜边的长.
【详解】
解:由勾股定理得:AB==10,
∵∠ACB=90°,
∴AB是⊙O的直径,
∴这个三角形的外接圆直径是10,
∴这个三角形的外接圆半径长为5,
故答案为:5.
【点睛】
本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.
4、5
【解析】
【分析】
根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
【详解】
如图,分别作AB、BC的中垂线,两直线的交点为O,
以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
由图可知,⊙O还经过点D、E、F、G、H这5个格点,
故答案为5.
【点睛】
此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
5、72°##72度
【解析】
【分析】
根据正多边形的中心角的计算公式: 计算即可.
【详解】
解:∵五边形ABCDE是⊙O的内接正五边形,
∴五边形ABCDE的中心角∠AOB的度数为 =72°,
故答案为:72°.
【点睛】
本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.
三、解答题
1、 (1)BC与⊙O相切,理由见详解
(2)
【解析】
【分析】
(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
(1)
解: BC与⊙O相切.
证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∵OD=OA,
∴∠OAD=∠ODA.
∴∠CAD=∠ODA.
∴OD∥AC.
∴∠ODB=∠C=90°,即OD⊥BC.
又∵BC过半径OD的外端点D,
∴BC与⊙O相切;
(2)
∵,∠ODB=90°,,
∴,
在Rt△OBD中,
由勾股定理得:,
∴S△OBD= OD•BD= ,S扇形ODF= ,
∴阴影部分的面积=.
【点睛】
本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
2、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
3、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
4、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
5、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测,共31页。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测,共35页。试卷主要包含了如图所示,在的网格中,A,在中,,,给出条件等内容,欢迎下载使用。
这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课后练习题,共33页。试卷主要包含了如图,A等内容,欢迎下载使用。