![2022年鲁教版(五四制)六年级数学下册第五章基本平面图形必考点解析练习题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12734128/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年鲁教版(五四制)六年级数学下册第五章基本平面图形必考点解析练习题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12734128/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年鲁教版(五四制)六年级数学下册第五章基本平面图形必考点解析练习题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12734128/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第五章 基本平面图形综合与测试课后作业题
展开
这是一份初中数学第五章 基本平面图形综合与测试课后作业题,共25页。试卷主要包含了若,则的补角的度数为,下列说法中正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )A.两点确定一条直线 B.两点之间直线最短C.两点之间线段最短 D.直线有两个端点2、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④3、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )A.2 B.2.5 C.3 D.3.54、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )A. B. C. D.5、若,则的补角的度数为( )A. B. C. D.6、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )A.东南方向 B.西南方向 C.东北方向 D.西北方向7、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°8、下列说法中正确的是( )A.两点之间直线最短 B.单项式πx2y的系数是C.倒数等于本身的数为±1 D.射线是直线的一半9、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.10、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )A.2 B.4 C.6 D.8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.2、在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)3、如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1,得到线段P1Q1,则线段P1Q1=_____;再分别取线段AP1和AQ1的中点P2,Q2,得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3,得到线段P3Q3;连续这样操作2021次,则每次的两个中点所形成的所有线段之和P1Q1+P2Q2+P3Q3+…+P2021Q2021=_____.4、在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若|a﹣b|=2022,且AO=2BO,则a+b的值为___.5、计算:________°.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.2、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.已知点O为数轴原点,点C,D为数轴上的动点.(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0)3、如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.4、如图,直线、相交于点,,.(1)若,则 __________.(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)5、如图,、两点把线段分成三部分,,为的中点.(1)判断线段与的大小关系,说明理由.(2)若,求的长. -参考答案-一、单选题1、A【解析】【分析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.2、B【解析】【分析】先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.【详解】解:根据题意,画出图形,如图所示:设 ,则 ,∵点D是线段AC的中点,∴ ,∴ ,∴AB=BD,即点B是线段AD的中点,故①正确;∴BD=CD,故②正确;∴AB=CD,故③错误;∴ ,∴BC﹣AD=AB,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.3、C【解析】【分析】由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.【详解】解:∵,,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴,∴BD=AD-AB=9-6=3,故选:C.【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.4、B【解析】【分析】由图知,∠AOB=180°−+,从而可求得结果.【详解】∠AOB=180°−+=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.5、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵,∴的补角的度数为.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.6、B【解析】略7、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.8、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式πx2y的系数是,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.9、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.10、A【解析】【分析】根据线段中点的定义计算即可.【详解】解:∵点C是线段AB的中点,∴AC=,又∵点D是线段AC的中点,∴CD=,故选:A.【点睛】本题考查了线段中点的定义,掌握线段中点的定义是关键.二、填空题1、 北 东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.2、或【解析】【分析】分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.【详解】①当射线OD、OE在直线AB的同侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴②当射线OD、OE在直线AB的异侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴综上所述,∠COD=或.故答案为:或【点睛】本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.3、 5 【解析】【分析】根据线段中点定义分别求出,据此得到规律代入计算即可.【详解】解:∵线段AP和AQ的中点为P1,Q1,∴,∵AP>AQ,∴P1Q1==5;∵线段AP1和AQ1的中点为P2,Q2,∴,∴,同理:,,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021= =设①,则②,①-②得,∴,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=,故答案为:5,.【点睛】此题考查了数轴上两点之间的距离公式,线段中点的定义,有理数的混合运算,规律的总结与计算,根据线段中点定义列得规律是解题的关键.4、-674【解析】【分析】根据绝对值和数轴表示数的方法,可求出OA,OB的长,进而确定a、b的值,再代入计算即可.【详解】∵|a﹣b|=2022,即数轴上表示数a的点A,与表示数b的点B之间的距离为2022,∴ AB=2022,∵且AO=2BO,∴OB=674,OA=1348,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴a=﹣1348,b=674,∴a+b=﹣1348+674=﹣674,故答案为:﹣674.【点睛】本题考查数轴表示数,代数式求值以及绝对值的定义,掌握数轴表示数的方法,绝对值的定义是解决问题的前提.5、60.3【解析】【分析】根据1=()°先把18化成0.3°即可.【详解】∵∴18=18=0.3°∴6018=60.3故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.三、解答题1、(1);(2)【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴ ∵OF平分∠AOE∴ ;(2)∵∠COF=x°,∠EOC=90°∴ ∵OF平分∠AOE∴ ∴.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、 (1)1,3(2)﹣3或5(3)或【解析】【分析】(1)根据定义即可求得答案;(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.(1)解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,故答案为:1,3;(2)解:∵点C,D表示的数分别为m,m+2,∴点D在点C的右侧,CD=2,当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,解得:m=﹣3,当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,解得:m=5,综上所述,m的值为﹣3或5;(3)解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,解得:t≤,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,解得:t≥,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,解得:t≤,当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),∴0≤BD≤9,7≤AC≤9,∴d2>6,不符合题意,综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.【点睛】本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.3、 (1)见解析(2)见解析(3)见解析(4),猜测【解析】【分析】(1)根据题意画射线AC,线段BC;(2)根据题意,连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD;(3)根据题意,利用刻度尺取线段CD的中点E,连接BE;(4)测量线段BE和AB的长度,进而求得猜测BE和AB之间的数量关系.(1)如图所示,射线AC,线段BC即为所求;(2)如图所示,连接AB,在线段AB的延长线上截取BD=BC,连接CD;(3)如图所示,取线段CD的中点E,连接BE;(4)通过测量,猜测【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.4、 (1)30°(2)11或23秒(3)或【解析】【分析】(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.(1)解:∵,,∴∠EOB=90°-∠COE=90°-30°=60°,∵,∴∠BOF=90°-∠EOB=90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵平分,∴,∴,设运动秒时,平分,根据题意得:,解得:;情况二∵平分,∴,设运动秒时,平分,根据题意得:,解得:;综上:运动11或23秒时,直线平分;(3)解:∵射线是的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=,∴,∵∠COE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°+∠COP=90°+,∴;综上:或.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.5、 (1),见解析(2)50【解析】【分析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1).理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2 x=10,解得x=5,∴AD=10x=50cm.【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试复习练习题,共25页。试卷主要包含了如图,一副三角板,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学第五章 基本平面图形综合与测试课堂检测,共24页。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共26页。试卷主要包含了下列现象,在数轴上,点M,上午8等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)