![难点详解冀教版九年级数学下册第三十章二次函数同步练习试题(含详解)第1页](http://m.enxinlong.com/img-preview/2/3/12720830/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第三十章二次函数同步练习试题(含详解)第2页](http://m.enxinlong.com/img-preview/2/3/12720830/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第三十章二次函数同步练习试题(含详解)第3页](http://m.enxinlong.com/img-preview/2/3/12720830/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试同步达标检测题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共22页。试卷主要包含了已知平面直角坐标系中有点A,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+32、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )A.x=-3 B.x=-1 C.x=2 D.x=33、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个4、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )A.2个 B.3个 C.4个 D.5个5、已知二次函数的图象上有三点,,,则、、的大小关系为( )A. B. C. D.6、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )A.4 B.2 C.6 D.37、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<08、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. B.C. D.9、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.10、二次函数的图象如图所示,那么下列说法正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.2、如图,在矩形中,,点E是的中点,连接,以点为原点,建立平面直角坐标系,点M是上一动点,取的中点为N,连接,则的最小值是________.(提示:两点间距离公式 )3、抛物线y=﹣2(x﹣1)2+4的最高点坐标是_____.4、已知二次函数的图象经过点,那么a的值为_____.5、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.三、解答题(5小题,每小题10分,共计50分)1、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.(1)求的值;(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?(注:利润=(销售单价-进价)×销售量)2、已知二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0).(1)求这个二次函数的表达式.(2)将x轴上的点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,若点P1,P2均在该二次函数图象上,求n的值.3、(1)解方程:2x2﹣3x﹣1=0;(2)用配方法求抛物线y=x2+4x﹣5的开口方向、对称轴和顶点坐标.4、超市销售某种儿童玩具,如果每件利润为40元(市场管理部分规定,该种玩具每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加元,每天售出件(1)请写出与之间的函数表达式(2)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?5、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式. -参考答案-一、单选题1、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B.【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.2、C【解析】【分析】一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.【详解】解:一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性,函数的对称轴为直线,故选:C.【点睛】本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.3、B【解析】【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2因此④正确的,综上所述,正确的有2个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.4、C【解析】【分析】根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.【详解】∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在y轴的负半轴上,∴c<0,∵抛物线的对称轴在y轴的右边,∴b<0,∴,故①正确;∵二次函数的图像与x轴交于点,∴a-b+c=0,根据对称轴的左侧,y随x的增大而减小,当x=-2时,y>0即,故②正确;∵,∴b= -2a,∴3a+c=0,∴2a+c=2a-3a= -a<0,故③正确;根据题意,得,∴,解得,故④错误;∵=0,∴,∴y=向上平移1个单位,得y=+1,∴为方程的两个根,且且.故⑤正确;故选C.【点睛】本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.5、A【解析】【分析】分别求出、、的大小,再进行判断即可.【详解】解:A、故选项正确,符合题意;B、故选项错误,不符合题意;C、故选项错误,不符合题意;D、故选项错误,不符合题意.故选:A.【点睛】此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.6、C【解析】【分析】将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.【详解】解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C(2,-2)点C关于x轴对称的点的坐标为(2,2),连接,如图,∵∴故选:C【点睛】本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.7、C【解析】【分析】根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.【详解】解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,∵-2<0<2<3<5,∴y3<y2<y4<y1,若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,若y2y4<0,则y1y3<0,选项C符合题意,若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,故选:C.【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.8、C【解析】【分析】此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:∵抛物线的顶点坐标为 ,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.故选:C【点睛】此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.9、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.10、D【解析】【分析】根据二次函数图象性质解题.【详解】解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;C.由图象可知,当x=1时,y=,故C不符合题意,D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,故选:D.【点睛】本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题1、y=(x-4)2【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y=x2的顶点坐标为(0,0),向右平移4个单位后的图象的顶点坐标为(4,0),所以,所得图象的解析式为y=(x-4)2,故答案为:y=(x-4)2.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.2、【解析】【分析】分别求出点A,C,E的坐标,求出直线BE的解析式,设点的坐标为,由中点坐标公式得,由两点之间的距离公式得:,进一步可得出AN的最小值.【详解】解:在矩形中,,点是的中点,,∴,设直线BE的解析式为y=kx,把E(3,3)代入y=kx,得,k=1直线的函数解析式为,设点的坐标为,点是上一动点,,点是的中点,,由两点之间的距离公式得:,由二次函数的性质得:在内,随的增大而增大,则当时,取得最小值,最小值为36,因此,的最小值为,故答案为:.【点睛】本题这一切考查了坐标与图形以及二次函数的性质等知识,熟练掌握二次函数的性质是解答本题的关键.3、【解析】【分析】根据,顶点坐标是,可得答案.【详解】解:抛物线为,开口向下,则最高点坐标是顶点坐标,顶点坐标.故答案为:.【点睛】本题考查了二次函数的性质以及顶点式,解题的关键是准确理解顶点式.4、【解析】【分析】把已知点的坐标代入抛物线解析式可得到的值.【详解】解:二次函数的图象经过点,,解得:.故答案为:.【点睛】本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.5、【解析】【分析】将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.【详解】解:将代入中得到:,解得,∴抛物线的对称轴为直线,且开口向上,根据“自变量离对称轴越远,其对应的因变量越大”可知,当时,对应的最大为:,当时,对应的最小为:,故n的取值范围为:,故答案为:.【点睛】本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.三、解答题1、 (1)的值是500;(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元【解析】【分析】(1)根据利润=(销售单价-进价)×销售量列方程求解即可;(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.(1)解:由题意可得,,解得:,答:的值是500;(2)解:设利润为w元,由题意:,,∵-10<0,∴时,取得最大值,此时, 答:当销售单价定为35元时,每月可获得最大利润,最大利润是2250元.【点睛】本题考查一元一次方程的应用、二次函数的实际应用,理解题意,根据等量关系正确得到一元一次方程和函数关系式是解答的关键.2、 (1)(2)1【解析】【分析】(1)利用待定系数法,即可求解;(2)设点 ,可得点 ,从而得到点P1,P2关于对称轴 对称,可得 ,再由点P1在该二次函数图象上,可得,即可求解.(1)解:∵二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0),∴ ,解得: ,∴这个二次函数的表达式为 ;(2)解:设点 ,∵点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,∴点 ,∵点P1,P2均在该二次函数图象上,∴点 关于对称轴 对称,∴ ,∴ ,即 ,∵点P1在该二次函数图象上,∴ ,∴,解得: 或,∵n>0,∴.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.3、(1) ;(2)抛物线的开口向上,对称轴为直线 ,顶点坐标为【解析】【分析】(1)利用公式法,即可求解;(2)先将抛物线解析式化为顶点式,即可求解.【详解】解:(1) ∵ ,∴ ,∴ ,∴ ;(2) ∴抛物线的开口向上,对称轴为直线 ,顶点坐标为 .【点睛】本题主要考查了解一元二次方程,二次函数的图象和性质,熟练掌握一元二次方程的解法,二次函数的图象和性质是解题的关键.4、 (1)(2)当x为20时w最大,最大值是2400元【解析】【分析】(1)根据“每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件”列函数关系式即可;(2)根据题意得到w=,根据二次函数的性质得到当x<30时,w随x的增大而增大,于是得到结论.(1)解:根据题意得,;(2)根据题意得,w==,∵a=<0,∴当x<30时,w随x的增大而增大,∵40+x≤60,x≤20,∴当x=20时,w最大=2400,答:当x为20时w最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.5、y=﹣x2﹣2x+3【解析】【分析】根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.【详解】解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),设抛物线的解析式为:y=a(x+3)(x﹣1),代入点(0,3),则3=a(0+3)(0﹣1),解得:a=﹣1,则抛物线的解析式为:y=﹣(x+3)(x﹣1),整理得到:y=﹣x2﹣2x+3.【点睛】本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。
这是一份冀教版九年级下册第30章 二次函数综合与测试课时练习,共28页。试卷主要包含了同一直角坐标系中,函数和,抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试课堂检测,共31页。试卷主要包含了抛物线的对称轴是,一次函数与二次函数的图象交点等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)