初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习
展开
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习,共16页。试卷主要包含了如果x2+kx﹣10=,下列各式因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.32、下列各式中,正确的因式分解是( )A.B.C.D.3、多项式分解因式的结果是( )A. B.C. D.4、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )A.﹣3 B.3 C.7 D.﹣75、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.6、下列各式因式分解正确的是( )A. B.C. D.7、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+18、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)9、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.10、下列各式中,从左到右的变形是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:=______.2、分解因式:2x2-4x=_____.3、把多项式2m+4mx+2x分解因式的结果为____________.4、当x=4,a+b=-3时,代数式:ax+bx的值为________.5、把多项式x2﹣6x+m分解因式得(x+3)(x﹣n),则m+n的值是______.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(2)计算:(3)因式分解:(4)因式分解:2、(1)计算:;(2)因式分解:.3、将下列各式分解因式:(1); (2)4、小明在学习有关整式的知识时,发现一个有趣的现象:对于关于的多项式,由于,所以当取任意一对互为相反数的数时,多项式的值是相等的.例如,当,即或0时,的值均为3;当,即或时,的值均为6.于是小明给出一个定义:对于关于的多项式,若当取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于对称.例如关于对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式关于 对称;(2)若关于的多项式关于对称,求的值;(3)整式关于 对称.5、分解因式:. -参考答案-一、单选题1、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.2、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.4、A【解析】【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A.【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).5、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).6、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A、不能进行因式分解,错误;B、选项正确,是因式分解;C、选项是整式的乘法,不是因式分解,不符合题意;D、,选项因式分解错误;故选:B.【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.7、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.9、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.【详解】解: A选项的右边不是积的形式,不是因式分解,故不符合题意;B选项的右边不是积的形式,不是因式分解,故不符合题意;C选项的右边不是积的形式,不是因式分解,故不符合题意;D选项的右边是积的形式,是因式分解,故符合题意,故选:D.【点睛】本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.10、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.二、填空题1、##【解析】【分析】根据公式法因式分解即可【详解】解:=故答案为:【点睛】本题考查了公式法分解因式,掌握公式法因式分解是解题的关键.2、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.3、【解析】【分析】根据提公因式法因式分解,提公因式因式分解即可【详解】解:2m+4mx+2x故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、-12【解析】【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.【详解】解:∵x=4,a+b=-3∴ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.5、-18【解析】【分析】根据题意列出等式,利用多项式相等的条件求出m与n的值,代入原式计算即可求出值.【详解】解:根据题意得:x2-6x+m=(x+3)(x-n)=x2+(3-n)x-3n,∴3-n=-6,m=-3n,解得:m=-27,n=9,则原式=-27+9=-18,故答案为:-18.【点睛】此题考查了因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键.三、解答题1、(1)(2)(3)(4)【解析】【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可.【详解】解:(1)(2)==(3)(4)===.【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算.2、(1);(2)【解析】【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)先提公因式,再用平方差公式分解因式即可.【详解】解:(1),,;(2),,.【点睛】本题主要考查了实数的运算,零指数幂,负整数指数幂,提公因式法与公式法,解题的关键是掌握.3、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.4、 (1)2(2)(3)【解析】【分析】(1)对多项式进行配方,根据新定义判断即可得;(2)求出的对称轴,令对称轴等于3即可得;(3)对多项式进行配方,根据新定义判断即可得.(1)解:,则此多项式关于对称,故答案为:2;(2)解:,关于的多项式关于对称,又关于的多项式关于对称,,即;(3)解:,则整式关于对称,故答案为:.【点睛】本题考查了配方法的应用,能够对多项式进行配方,理解新定义是解题的关键.5、.【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试测试题,共17页。试卷主要包含了已知实数x,y满足,下列各式中,不能因式分解的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份2021学年第十一章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,把多项式分解因式,其结果是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共18页。试卷主要包含了下列因式分解正确的是,下列运算错误的是,当n为自然数时,等内容,欢迎下载使用。