![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解达标测试试卷(精选含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12719138/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解达标测试试卷(精选含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12719138/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解达标测试试卷(精选含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12719138/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十一章 因式分解综合与测试同步训练题
展开
这是一份2021学年第十一章 因式分解综合与测试同步训练题,共17页。试卷主要包含了若a,把分解因式的结果是.等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )A.﹣3 B.3 C.7 D.﹣72、下列因式分解正确的是( ).A. B.C. D.3、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)4、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )A.一定为正数 B.一定为负数C.为非负数 D.可能为正数,也可能为负数5、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)6、下列等式中,从左到右是因式分解的是( )A. B.C. D.7、下列由左到右的变形,是因式分解的是( )A. B.C. D.8、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.9、把分解因式的结果是( ).A. B.C. D.10、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:________.2、当x=4,a+b=-3时,代数式:ax+bx的值为________.3、分解因式_______.4、(________)(________);5、若,则代数式的值等于______.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)﹣9x3y+6x2y2﹣xy3(2)(x2+4)2﹣16x22、因式分解:(1)(2)3、在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:(1)__________.(2)__________.(3)__________.(4)__________.4、分解因式:(1)(2)5、已知,求的值. -参考答案-一、单选题1、A【解析】【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A.【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).2、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.3、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.4、B【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:∵a、b、c为一个三角形的三边,∴a-c+b>0,a-c-b<0,∴(a-c)2-b2=(a-c+b)(a-c-b)<0.∴代数式(a-c)2-b2的值一定为负数.故选:B.【点睛】本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.6、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.7、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.9、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.10、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.二、填空题1、m(m+1)(m﹣1).【解析】【分析】原式提取m,再利用平方差公式分解即可.【详解】解:原式=m(m2﹣12)=m(m+1)(m﹣1).故答案为:m(m+1)(m﹣1).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、-12【解析】【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.【详解】解:∵x=4,a+b=-3∴ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.3、【解析】【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.4、;;;;;【解析】【分析】利用十字相乘法进行因式分解即可得.【详解】解:;;;;;;故答案为:;;;;;.【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键.二次三项式,若存在 ,则.5、9【解析】【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.【详解】解:∵,∴,∴=====9故答案为:9.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.三、解答题1、 (1)(2)【解析】【分析】(1)先提出公因式,再利用完全平方公式因式分解,即可求解;(2)先用平方差公式因式分解,再利用完全平方公式因式分解,即可求解.(1)解: ;(2)解: .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法进行解答是解题的关键.2、 (1)(2)-4(6a+b)( a+6b)【解析】【分析】(1)用因式分解法分解即可;(2)用平方差公式分解即可;(1)解:===;(2)解:===(5a-5b+7a+7b)(5a-5b-7a-7b)=(12a+2b)( -2a-12b)=-4(6a+b)( a+6b) .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.3、 (1)(x-y)(x+6y)(2)(x-3a)(x-a-2)(3)(x+a-3b)(x-a-2b)(4)(20182x2+1)(x-1)【解析】【分析】(1)将-6y2改写成-y·6,然后根据例题分解即可;(2)将3a2+6a改写成,然后根据例题分解即可;(3)先化简,将改写,然后根据例题分解即可;(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式==(x-y)(x+6y);(2)解:原式==(x-3a)(x-a-2);(3)解:原式====(x+a-3b)(x-a-2b);(4)解:原式====(20182x+1)(x-1) .【点睛】本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.4、 (1)(2)【解析】【分析】(1)先提取公因式,再利用平方差公式因式分解;(2)先利用平方差公式因式分解,再提取公因式因式分解.(1)解:;(2)解:.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及平方差公式.5、4【解析】【分析】先利用平方差公式计算,再合并,然后根据,得到代入即可求解.【详解】解: . ∵,∴. ∴.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键.
相关试卷
这是一份2021学年第十一章 因式分解综合与测试课时训练,共18页。试卷主要包含了如图,长与宽分别为a,下列运算错误的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习,共16页。试卷主要包含了分解因式2a2,下列因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份2021学年第十一章 因式分解综合与测试练习题,共17页。试卷主要包含了对于有理数a,b,c,有,下列因式分解正确的是.,已知x,y满足,则的值为,计算的值是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)