初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习
展开
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习,共16页。试卷主要包含了下列多项式不能因式分解的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列由左到右的变形,属于因式分解的是( )A. B.C. D.2、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+13、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定4、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)5、下列多项式不能因式分解的是( )A. B. C. D.6、下列各式从左到右的变形中,属于因式分解的是( )A. B.C. D.7、下列等式中,从左到右是因式分解的是( )A. B.C. D.8、因式分解a2b﹣2ab+b正确的是( )A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)29、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)10、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )A.一定为正数 B.一定为负数C.为非负数 D.可能为正数,也可能为负数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_______.2、因式分解:5a2﹣45b2=_____.3、把多项式因式分解的结果是_______.4、因式分解:______.5、分解因式:__________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:.2、分解因式:(1);(2).3、分解因式:2x3+12x2y+18xy2.4、分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).5、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2. -参考答案-一、单选题1、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.2、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.3、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.4、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.5、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A、不能因式分解,符合题意;B、=,能因式分解,不符合题意;C、=,能因式分解,不符合题意;D、 =,能因式分解,不符合题意,故选:A.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.6、B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:、是单项式的乘法,不是因式分解,故本选项不符合题意;、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意; 、是整式的乘法,不是因式分解,故本选项不符合题意;、因式分解错误,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.8、D【解析】【分析】先提取公因式,再用完全平方公式分解因式即可.【详解】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故选:D.【点睛】本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.9、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.10、B【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:∵a、b、c为一个三角形的三边,∴a-c+b>0,a-c-b<0,∴(a-c)2-b2=(a-c+b)(a-c-b)<0.∴代数式(a-c)2-b2的值一定为负数.故选:B.【点睛】本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.二、填空题1、【解析】【分析】先提出公因式,再利用平方差公式进行分解,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并灵活选用合适的方法解答是解题的关键.2、【解析】【分析】原式提取公因式5,再利用平方差公式分解即可.【详解】解:原式=5(a2﹣9b2)=5(a+3b)(a﹣3b).故答案为:5(a+3b)(a﹣3b).【点睛】此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.3、【解析】【分析】先提取公因式,在利用公式法计算即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.4、【解析】【分析】直接提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:原式 .故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.5、【解析】【分析】没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【详解】解:,故答案为:.【点睛】本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.三、解答题1、【解析】【分析】先提取公因式,然后再利用完全平方公式进行分解因式即可.【详解】解:原式.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.2、(1);(2)【解析】【分析】(1)先提公因数3,再利用完全平方公式公式分解因式即可;(2)先提公因式(m-2),再利用平方差公式分解因式即可.【详解】解:(1)==;(2)==.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,熟练掌握因式分解的方法是解答的关键.3、2x(x+3y)2【解析】【分析】先提公因式,进而根据完全平方公式因式分解即可.【详解】解:2x3+12x2y+18xy2=2x(x2+6xy+9y2)=2x(x+3y)2.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、 (1)(x+2)2(x﹣2)2(2)(a﹣2)(m﹣1)(m+1)【解析】【分析】(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.(1)解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)解:m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).【点睛】本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.5、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步训练题,共16页。试卷主要包含了下列因式分解正确的是,下列变形,属因式分解的是等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了已知实数x,y满足,已知c<a<b<0,若M=|a,已知a2等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课堂检测,共18页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解正确的是等内容,欢迎下载使用。