![2021-2022学年冀教版七年级数学下册第八章整式的乘法定向攻克试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12718050/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第八章整式的乘法定向攻克试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12718050/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第八章整式的乘法定向攻克试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12718050/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第八章 整式乘法综合与测试达标测试
展开
这是一份冀教版七年级下册第八章 整式乘法综合与测试达标测试,共17页。试卷主要包含了下列计算正确的是,若的结果中不含项,则的值为,计算的结果,已知,,c=等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…,根据上述规律计算:2+22+23+…+262+263=( )A.264+1 B.264+2 C.264﹣1 D.264﹣22、若三角形的底边为2n,高为2n﹣1,则此三角形的面积为( )A.4n2+2n B.4n2﹣1 C.2n2﹣n D.2n2﹣2n3、如果多项式 x2  mx  4 恰好是某个整式的平方,那么 m 的值为( )A.2 B.-2 C.±2 D.±44、已知3m=a,3n=b,则33m+2n的结果是( )A.3a+2b B.a3b2 C.a3+b2 D.a3b﹣25、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A.3×106 B.3×107 C.3×108 D.0.3×1086、下列计算正确的是( )A. B. C. D.7、若的结果中不含项,则的值为( )A.0 B.2 C. D.-28、计算的结果( )A. B. C. D.9、已知,,c=(0.8)﹣1,则a,b,c的大小关系是( )A.c>b>a B.a>c>b C.a>b>c D.c>a>b10、据国家卫健委数据显示,截至2022年1月4日,各地累计报告接种新冠病毒疫苗约2863560000剂( )A.2.86356×109 B.2.86356×1010C.0.286356×1010 D.0.286356×109第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、化简:(8x3y3﹣4x2y2)÷2xy2=_____.2、已知,,,为正整数,则______.3、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.4、2021年1月份国家统计局发布数据显示,初步核算,2020年全年国内生产总值为1015986亿元.请将数字“1015986”保留3个有效数字并用科学记数法表示为______.5、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.三、解答题(5小题,每小题10分,共计50分)1、图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)观察图2,请你写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系为 .(2)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(3)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.2、计算:(1)a4•3a2+(﹣2a2)3+5a6;(2)(a+b)(a2﹣ab+b2);(3)(12ab2﹣9a2b)÷3ab;(4)(x﹣2y+3)(x+2y﹣3).3、计算:(1)(2)(3).(4).4、计算:a•a7﹣(﹣3a4)2+a10÷a2.5、计算:(x+2)(4x﹣1)+2x(2x﹣1). -参考答案-一、单选题1、D【解析】【分析】先由规律,得到(x64﹣1)÷(x﹣1)的结果,令x=2得结论.【详解】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:D.【点睛】本题考查了平方差公式、及数字类的规律题,认真阅读,总结规律,并利用规律解决问题.2、C【解析】【分析】根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.【详解】解:三角形面积为×2n(2n−1)=2n2-n,故选:C.【点睛】本题考查单项式乘多项式的运算,理解三角形面积=×底×高,掌握单项式乘多项式的运算法则是解题关键.3、D【解析】【分析】根据平方项确定是完全平方公式,把公式展开,利用一次项系数相等确定m的值即可.【详解】解:∵x2  mx  4=(x±2)2=x2±4x+4,∴m=±4.故选D.【点睛】本题考查完全平方公式,掌握公式的特征是解题关键.4、B【解析】【分析】逆用同底数幂的乘法和幂的乘方法则计算.【详解】解:∵3m=a,3n=b,∴33m+2n=33m×32n=== a3b2,故选B.【点睛】本题考查了同底数幂的乘法和幂的乘方运算的的逆运算,熟练掌握幂的运算法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.5、B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:30000000=3×107.故选:B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6、D【解析】【分析】根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方分别计算即可.【详解】解:A、与不属于同类项,不能合并,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意.故选:D.【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方,解答的关键是对相应的运算法则的掌握.7、B【解析】【分析】先根据多项式乘以多项式法则展开,合并同类项,由题可得含x的平方的项的系数为0,求出a即可.【详解】解:(x2+ax+2)(2x-4)=2x3+2ax2+4x-4x2-4ax-8=2x3+(-4+2a)x2+(-4a+4)x-8,∵(x2+ax+2)(2x-4)的结果中不含x2项,∴-4+2a=0,解得:a=2.故选:B.【点睛】本题考查了多项式乘以多项式,能熟练地运用法则进行化简是解此题的关键.8、A【解析】【分析】利用幂的乘方计算即可求解.【详解】解:.故选:.【点睛】本题考查了幂的乘方,掌握(am)n=amn是解决本题的关键.9、B【解析】【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简,进而比较大小得出答案.【详解】解:∵a=()﹣2,b=()0=1,c=(0.8)﹣1,∴1,∴a>c>b.故选:B.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.10、A【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:.故选A.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.二、填空题1、【解析】【分析】多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,根据运算法则进行运算即可.【详解】解:(8x3y3﹣4x2y2)÷2xy2 故答案为:【点睛】本题考查的是多项式除以单项式,掌握“多项式除以单项式的法则”是解本题的关键.2、【解析】【分析】根据同底数幂相乘的逆运算解答.【详解】解:∵,,∴,故答案为:ab.【点睛】此题考查了同底数幂相乘的逆运算,熟记公式是解题的关键.3、-5【解析】【分析】根据多项式乘多项式的乘法法则解决此题.【详解】解:∵a+b=-3,ab=1,∴(a+1)(b+1)(a-1)(b-1)=[(a+1)(b+1)][(a-1)(b-1)]=(ab+a+b+1)(ab-a-b+1)=(1-3+1)×(1+3+1)=-1×5=-5.故答案为:-5.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.4、【解析】【分析】用科学记数法保留有效数字,要在标准形式中的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【详解】解:.故答案是:.【点睛】本题主要考查了科学记数法以及有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.5、20【解析】【分析】根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.【详解】解:∵大小两个正方形边长分别为a、b,∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;∵a+b=10,ab=20,∴Sa2b2ab(a+b)2ab10220=20.故答案为:20.【点睛】本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.三、解答题1、 (1)(a+b)2=(a-b)2+4ab(2)m+n=2或-2(3)图中阴影部分面积为【解析】【分析】(1)利用等面积法,大正方形面积等于阴影小正方形面积加上四个长方形面积,得到关系式;(2)由(1)得到的关系式求解即可;(3)设AC=m,BC=n,则m+n=8,m2+n2=26,由(1)得到的关系式求解即可.(1)解:由图形面积得(a+b)2=(a-b)2+4ab,故答案为:(a+b)2=(a-b)2+4ab;(2)解:由(1)题所得(a+b)2=(a-b)2+4ab,∴(m+n)2=(m-n)2+4mn,∴当mn=-3,m-n=4时,(m+n)2=42+4×(-3)=4,∴m+n=2或-2;(3)解:设AC=m,BC=n,则m+n=8,m2+n2=26,又由(m+n)2=m2+2mn+n2,得2mn=(m+n)2-(m2+n2)=64-26=38,∴图中阴影部分的面积为:mn=.【点睛】本题考查了完全平方公式的几何意义,关键是能用算式表示图形面积并进行拓展应用.2、(1)0;(2)a3+b3;(3)4b﹣3a;(4)x2﹣4y2+12y﹣9【解析】【分析】(1)根据整式的乘法以及整式的加法运算法则即可求出答案.(2)根据整式的乘法运算法则即可求出答案.(3)根据整式的除法运算法则即可求出答案.(4)根据平方差公式以及完全平方公式即可求出答案.【详解】解:(1)原式.(2)原式.(3)原式.(4)原式.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算以及乘除运算法则,本题属于基础题型.3、 (1)(2)(3)(4)【解析】【分析】(1)根据积的乘方运算法则,幂的乘方,同底数幂的乘法镜像计算即可;(2)根据多项式乘以多项式进行计算即可;(3)根据完全平方公式和单项式乘以多项式进行计算即可;(4)根据多项式除以单项式进行计算即可.(1)原式;(2) (3)原式 (4)原式=【点睛】本题考查了整式的混合运算,幂的运算,掌握相关运算法则和乘法公文是解题的关键.4、﹣7a8【解析】【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.5、【解析】【分析】根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.【详解】解:【点睛】本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课堂检测,共15页。试卷主要包含了计算a2•,的计算结果是,下列运算一定正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试当堂达标检测题,共18页。试卷主要包含了下列计算正确的是,若的结果中不含项,则的值为,观察下列各式等内容,欢迎下载使用。
这是一份初中数学第八章 整式乘法综合与测试课后作业题,共15页。试卷主要包含了下列计算正确的是.A.B.等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)