搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新沪教版七年级数学第二学期第十四章三角形章节测评试卷

    2022年最新沪教版七年级数学第二学期第十四章三角形章节测评试卷第1页
    2022年最新沪教版七年级数学第二学期第十四章三角形章节测评试卷第2页
    2022年最新沪教版七年级数学第二学期第十四章三角形章节测评试卷第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共25页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若三条线段中a=3,b=5,c为奇数,那么以abc为边组成的三角形共有(    A.1个 B.2个 C.3个 D.4个2、等腰三角形的一个顶角是80°,则它的底角是(    ).A.40° B.50° C.60° D.70°3、三个等边三角形的摆放位置如图所示,若,则的度数为  A. B. C. D.4、△BDE△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为(  )A.8 B.10 C.11 D.125、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是(    ).A.65° B.65°或80° C.50°或80° D.50°或65°6、已知三角形的两边长分别为,则下列长度的四条线段中能作为第三边的是(    A. B. C. D.7、如图,为估计池塘岸边AB两点的距离,小方在池塘的一侧选取一点OOA=15米,OB=10米,AB间的距离不可能是(  )A.5米 B.10米 C.15米 D.20米8、如图,全等,且对应.若,则的长为(    A.4 B.5 C.6 D.无法确定9、有两边相等的三角形的两边长为,则它的周长为(    A. B. C. D.10、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是(   A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边三角形中,边的高线,延长至点,使,则BE的长为__________.2、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)3、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.4、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,的中线.若△ABC的面积为8,则△的面积为_______________.5、如图,四边形中,,连接平分E是直线上一点,,则的长为________.三、解答题(10小题,每小题5分,共计50分)1、已知:(1)O是∠BAC内部的一点.①如图1,求证:∠BOC>∠A②如图2,若OAOBOC,试探究∠BOC与∠BAC的数量关系,给出证明.(2)如图3,当点O在∠BAC的外部,且OAOBOC,继续探究∠BOC与∠BAC的数量关系,给出证明.2、如图,在等腰△ABC和等腰△ADE中,ABACADAE,∠BAC=∠DAECED三点共线,作AMCDM.若BD=5,DE=4,求CM3、如图,在中,的平分线,点在边上,且(Ⅰ)求证:(Ⅱ)若,求的大小.4、已知:如图,∠ABC=∠DCB,∠1=∠2.求证ABDC5、如图,在四边形ABCD中,ECB上一点,分别延长AEDC相交于点F(1)求证:(2)若,求BE的长.6、如图,在中,,点D内一点,连接CD,过点C,连接ADBE.求证:7、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:ADCE8、如图,是顶角相等的等腰三角形,BCDE分别是这两个等腰三角形的底边.求证9、如图,点BFCE在一条直线上,AB=DE,∠B=∠EBF=CE.求证:AC=DF10、如图,已知点EC在线段BF上,.求证: -参考答案-一、单选题1、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.c是奇数,c=3或5或7,有3个值.则对应的三角形有3个.故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.2、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答.【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°.故选:B.【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.3、A【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:故选:【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.4、B【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【详解】解:∵△GFH为等边三角形,FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,AB=BC=AC=5,∠ACB=∠A=60°,∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHCHGC=180°-∠C-∠GHC =120°-∠GHC∴∠AHF=∠HGC在△AFH和△CHG∴△AFH≌△CHG(AAS),AF=CH∵△BDE和△FGH是两个全等的等边三角形,BE=FH∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC=10.故选:B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.5、D【分析】可以是底角,也可以是顶角,分情况讨论即可.【详解】角为底角时,底角就是角为等腰三角形的顶角时,底角为因此这个等腰三角形的底角为故选:D.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6、C【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.7、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,AB间的距离在5和25之间,AB间的距离不可能是5米;故选:A【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.8、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】全等,对应AB=DF=4故选:A.【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.9、D【分析】有两边相等的三角形,是等腰三角形,两边分别为,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.二、填空题1、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.【详解】解:三角形是等边三角形,BCAC=2, 边的高线,DC =1,故答案为:3.【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.2、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的②若选,是边角边,能得到形状和大小都确定的③若选,是边边角,不能得到形状和大小都确定的所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.3、圆锥【分析】根据立体图形视图、等腰三角形的性质分析,即可得到答案.【详解】根据题意,这个立体图形是圆锥故答案为:圆锥.【点睛】本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.4、【分析】根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.【详解】由题意得:△的面积=,△的面积=,……,△的面积==故答案是:【点睛】本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.5、6或10【分析】先利用平行线的性质和等角对等边的性质得到AB=AD,再根据点ED的左边和右边分别求解即可;【详解】平分是等腰三角形,当点E在线段AD上时,当点E在线段AD延长线上时,故答案是:6或10.【点睛】本题主要考查了平行线的性质,角平分线的定义,等角对等边,先证出AB=AD是解题的关键.三、解答题1、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析【分析】(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;②延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可.【详解】证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO∴∠BOC>∠A②∠BOC与∠BAC的数量关系:∠BOC=2∠A证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠COAOBOC∴∠BAO=∠B,∠CAO=∠C∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC证明:如图所示,设∠BxOAOBOC∴∠B=∠BAOx,∠C=∠OAC=∠BAC+x在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAEx+∠BOC=∠CAE+x+∠CAE=2∠BAC+x即∠BOC=2∠BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.2、CM=7.【分析】根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.【详解】解:∵∠BAC=∠DAE∴∠BAC﹣∠BAE=∠DAE﹣∠BAE∴∠BAD=∠CAE在△AEC和△ADB中,∴△AEC≌△ADBSAS),又∵BD=5,CEBD=5,ADAEAMCDDE=4,CMCE+EM=5+2=7.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.3、(Ⅰ)见解析;(Ⅱ)【分析】(Ⅰ)由CD的平分线得出,由得出从而得出,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.【详解】(Ⅰ)∵CD的平分线,(Ⅱ)∵【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键4、见解析【分析】由“ASA”可证△ABO≌△DCO,可得结论.【详解】证明:如图,记的交点为 ∵∠ABC=∠DCB,∠1=∠2,又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,∴∠OBC=∠OCBOBOC在△ABO和△DCO中,∴△ABO≌△DCOASA),ABDC【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.5、(1)见解析(2)【分析】(1)利用的外角,以及证明即可.(2)证明,可知,从而得出答案.(1)证明:∵的外角,又∵,∴(2)解:在中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.6、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.7、见解析.【分析】先根据角平分线的定义得到∠BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=BAC,从而得到∠BAD=∠E,即可证明ADCE【详解】解:∵AD平分∠BAC,∴∠BAD=BACAE=AC∴∠E=∠ACE∵∠E+∠ACE=∠BAC∴∠E=BAC∴∠BAD=∠EADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.8、见解析【分析】是顶角相等的等腰三角形,得出,证即可得证.【详解】解:是顶角相等的等腰三角形,得出中,【点睛】本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.9、见解析【分析】先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE        BC= EF                     在△ABC和△DEF中,∴△ABC≌△DEFSAS).        AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.10、见解析【分析】由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明【详解】证明:,即∴在中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共34页。试卷主要包含了如图,在中,等内容,欢迎下载使用。

    初中沪教版 (五四制)第十四章 三角形综合与测试一课一练:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共33页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map