初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共30页。试卷主要包含了如图,下列条件中能判断直线的是,下列说法等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
2、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )
A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
3、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )
A.60° B.90° C.120° D.150°
4、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
5、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
6、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
A.① B.②和③ C.④ D.①和④
7、若直线a∥b,b∥c,则a∥c的依据是( ).
A.平行的性质 B.等量代换
C.平行于同一直线的两条直线平行. D.以上都不对
8、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
9、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )
A.2cm B.小于2cm C.不大于2cm D.4cm
10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.
2、如图①,已知,,的交点为,现作如下操作:第一次操作,分别作和的平分线,交点为;第二次操作,分别作和的平分线,交点为;第三次操作,分别作和的平分线,交点为……第次操作,分别作和的平分线,交点为.如图②,若,则的度数是__________.
3、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.
4、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.
5、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.
三、解答题(10小题,每小题5分,共计50分)
1、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
(1)如图1,求∠DOE的度数;
(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
2、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.
3、如图,平面上有三个点A、B、C.
(1)根据下列语句按要求画图.
①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
②连接CA、CD、CB;
③过点C画CE⊥AD,垂足为点E;
④过点D画DF∥AC,交CB的延长线于点F.
(2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
②用刻度尺或圆规检验DF与AC的大小关系为_________.
4、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.
5、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
6、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
7、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
8、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
(1)过点C画AD的平行线CE;
(2)过点B画CD的垂线,垂足为F.
9、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.
10、如图,直线相交于点平分.
(1)若,求∠BOD的度数;
(2)若,求∠DOE的度数.
-参考答案-
一、单选题
1、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
2、B
【分析】
根据平行线的判定定理分析即可.
【详解】
A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
故选:B.
【点睛】
本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
3、C
【分析】
先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
【详解】
解:∵AB∥CD,
∴∠1=∠CEF,
又∵∠2+∠CEF=180°,
∴∠2+∠1=180°,
∵∠2=2∠1,
∴3∠1=180°,
∴∠1=60°,
∴∠2=120°,
故选C.
【点睛】
本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
4、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
5、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
6、A
【分析】
利用平行线的性质逐一判断即可.
【详解】
①是平行线的性质,故符合题意;
②是平行线的判定,故不符合题意;
③是平行线的判定,故不符合题意;
④是平行线的判定,故不符合题意;
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
7、C
【分析】
根据平行公理的推论进行判断即可.
【详解】
解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
故选:C.
【点睛】
本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
8、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
9、C
【分析】
根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
【详解】
解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,
∴点到直线的距离不大于,
故选:C.
【点睛】
本题考查了垂线段最短的性质,熟记性质是解题的关键.
10、D
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
二、填空题
1、
【分析】
根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.
【详解】
解:如图,∵∠1=∠2=52°,
∴a∥b,
∴∠3=∠5=91°,
∵∠5+∠4=180°,
∴∠4=180°﹣∠5=89°.
故答案为:89°.
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
2、
【分析】
先过作,根据,得出,再根据平行线的性质,得出,,进而得到;先根据和的平分线交点为,运用图①的结论,得出;同理可得;根据和的平分线,交点为,得出;据此得到规律,最后求得的度数即可.
【详解】
解:如图①,过作,
,
,
,,
,
,
由此可得:
如图②,和的平分线交点为,
,
和的平分线交点为,
,
和的平分线,交点为,
,
以此类推,,
∴,
当时,.
故答案为:.
【点睛】
本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
3、##
【分析】
如图,标注字母,过作 再证明证明从而可得答案.
【详解】
解:如图,标注字母,过作
∠1=52°,
故答案为:
【点睛】
本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.
4、50
【分析】
先求出∠BOD,根据平角的性质即可求出∠AOC.
【详解】
∵OE是∠DOB的角平分线,当∠DOE=20°
∴∠BOD=2∠DOE=40°
∵OC⊥OD,
∴∠AOC=180°-90°-∠BOD=50°
故答案为:50.
【点睛】
此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质.
5、40°
【分析】
利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
【详解】
解:∵DE∥BC,
∴∠ADE=∠B=70°,
由折叠的性质可得∠ADE=∠EDF=70°,
∴∠BDF=180°﹣∠ADE-∠EDF=40°,
故答案为:40°.
【点睛】
本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
三、解答题
1、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【分析】
(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
【详解】
解:(1)∵EO⊥AB,
∴∠BOE=90°,
∴∠COE+∠BOD=90°,
∵∠EOC:∠BOD=7:11,
∴∠COE=35°,∠BOD=55°,
∴∠DOE=∠BOD+∠BOE=145°;
(2)∵MN⊥CD,
∴∠COM=90°,
∴∠EOM=∠COE+∠COM=125°,
∵∠BOD=55°,
∴∠BOC=180°-∠BOD=125°,
∴∠AOD=∠BOC=125°,
∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【点睛】
本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
2、平行,见解析
【分析】
先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.
【详解】
解:CD∥AB.理由如下:
∵BF、DE分别是∠ABC、∠ADC的角平分线,
∴∠3=∠ADC,∠2=∠ABC.
∵∠ABC=∠ADC,
∴∠3=∠2.
又∵∠1=∠2,
∴∠3=∠1.
∴CD∥AB(内错角相等,两直线平行).
【点睛】
本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.
3、(1)见解析;(2)①;垂线段最短;②相等
【分析】
(1)根据题意作图即可;
(2)根据垂线段最短以及圆规进行检验即可.
【详解】
(1)如图所示,即为所求;
(2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
②用圆规检验DF=AC.
【点睛】
本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
4、(1)见解析;(2)见解析.
【分析】
(1)利用两点之间距离线段最短,进而得出答案;
(2)利用点到直线的距离垂线段最短,即可得出答案.
【详解】
解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,
(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
【点睛】
本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
6、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
7、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
【分析】
由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
【详解】
解:因为∠BOC+∠AOC=180º(平角定义),
所以∠AOC是∠BOC的补角,
∠AOD=∠BOC(已知),
所以∠BOC+∠BOD=180º.
所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
因为∠AOC和∠BOC相邻,
所以∠BOC的邻补角为:∠AOC.
∠BOC没有对顶角.
【点睛】
本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
8、(1)见解析;(2)见解析
【分析】
(1)根据要求作出图形即可.
(2)根据要求作出图形即可.
【详解】
解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
如图,直线CE即为所求作.
(2)根据题意得:CD是长为6,宽为3的长方形的对角线,
所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
如图,直线BF即为所求作.
【点睛】
本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
9、∠C的度数为120°
【分析】
首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.
【详解】
解:∵∠CDE=150°,
∴∠CDB=180°-∠CDE=30°,
又∵ABCD,
∴∠ABD=∠CDB=30°,
∵BE平分∠ABC,
∴∠ABC=2∠ABD=60°,
∵ABCD,
∴∠C=180°-∠ABC=120°.
【点睛】
本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.
10、(1)20°;(2)60°
【分析】
(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
【详解】
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共27页。试卷主要包含了直线m外一点P它到直线的上点A,如图,直线a等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共30页。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共27页。试卷主要包含了如图,直线b,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。