![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12709241/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12709241/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12709241/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共33页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
2、如图,直线被所截,下列说法,正确的有( )
①与是同旁内角;
②与是内错角;
③与是同位角;
④与是内错角.
A.①③④ B.③④ C.①②④ D.①②③④
3、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )
A.第一次向右拐40°,第二次向右拐140°.
B.第一次向右拐40°,第二次向左拐40°.
C.第一次向左拐40°,第二次向右拐140°.
D.第一次向右拐140°,第二次向左拐40°.
4、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )
A.60° B.90° C.120° D.150°
5、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )
A.3cm B.5cm C.6cm D.不大于3cm
6、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
7、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
8、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
9、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
10、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40°,则∠EOF=_______.
2、在同一平面内的三条直线,它们的交点个数可能是________.
3、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.
4、如图,直线AB、CD、EF相交于点O,OG⊥EF,且∠GOB=20°,∠AOC=40°,则∠COE=_____°.
5、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.
三、解答题(10小题,每小题5分,共计50分)
1、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.
证明:∵AD∥BC(已知),
∴∠3= ( ).
∵∠3=∠4(已知),
∴∠4= ( ).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF( ).
即∠BAF= .
∴∠4=∠BAF.( ).
∴AB∥CD( ).
4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
(1)求∠BOC的度数;
(2)试说明OE平分∠AOC.
2、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.
3、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
(探究)已知:如图②,点E在AB上,且CE平分,.求证:.
(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
4、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
5、下列语句中,有一个是错误的,其余三个都是正确的:
①直线EF经过点C; ②点A在直线l外;
③直线AB的长为5 cm; ④两条线段m和n相交于点P.
(1)错误的语句为________(填序号).
(2)按其余三个正确的语句,画出图形.
6、如果把图看成是直线AB,EF被直线CD所截,那么
(1)∠1与∠2是一对什么角?
(2)∠3与∠4呢?∠2与∠4呢?
7、请把下列证明过程及理由补充完整(填在横线上):
8、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
9、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
10、如图,AB∥DG,∠1+∠2=180°.
(1)试说明:AD∥EF;
(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
2、D
【分析】
根据同位角、内错角、同旁内角的定义可直接得到答案.
【详解】
解:①与是同旁内角,说法正确;
②与是内错角,说法正确;
③与是同位角,说法正确;
④与是内错角,说法正确,
故选:D.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
3、B
【分析】
画出图形,根据平行线的判定分别判断即可得出.
【详解】
A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;
B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;
C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;
D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.
故选:B.
【点睛】
本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.
4、C
【分析】
先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
【详解】
解:∵AB∥CD,
∴∠1=∠CEF,
又∵∠2+∠CEF=180°,
∴∠2+∠1=180°,
∵∠2=2∠1,
∴3∠1=180°,
∴∠1=60°,
∴∠2=120°,
故选C.
【点睛】
本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
5、D
【分析】
根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.
【详解】
解:垂线段最短,
点到直线的距离,
故选:D.
【点睛】
本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.
6、B
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
7、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
8、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
9、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
10、B
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
二、填空题
1、130°
【分析】
根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.
【详解】
解:∵AB、CD相交于点O,
∴∠BOD=∠AOC=40°.
∵OD平分∠BOF,
∴∠DOF=∠BOD=40°,
∵OE⊥CD,
∴∠EOD=90°,
∴∠EOF=∠EOD+∠DOF=130°.
故答案为130°.
【点睛】
本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.
2、0或1或2或3个
【分析】
分类讨论画出图形,①当三条直线平行时,没有交点;②三条直线交于一点时,有一个交点;③两条平行线与一条直线相交时,有两个交点;④三条直线两两相交时有三个交点吗,即可得出答案.
【详解】
解:如图,
由图可知:同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.
故答案是:0个或1个或2个或3个
【点睛】
本题主要考查了相交线和平行线.正确画出图形,即可得到正确结果.
3、30
【分析】
先证明再证明再利用平行线的性质与对顶角的性质可得答案.
【详解】
解:如图,记交于点
由题意得:
故答案为:
【点睛】
本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
4、30°
【分析】
先根据对顶角得到∠BOD=40°,再根据垂直的定义得到∠EOG=∠FOG=90°,求出∠DOF,最后根据对顶角求出∠COE.
【详解】
解:∵∠AOC=40°,
∴∠BOD=40°,
∵OG⊥EF,
∴∠EOG=∠FOG=90°,
∵∠GOB=20°,
∴∠BOF=70°,
∴∠COE=∠DOF=70°-40°=30°,
故答案为:30°.
【点睛】
本题考查了垂直的定义,对顶角的性质;弄清各个角之间的关系是解决问题的关键.
5、50°
【分析】
根据平行线的性质计算即可;
【详解】
解:如图所示,由折叠可得,∠3=∠1=65°,
∴∠CEG=130°,
∵AB∥CD,
∴∠2=180°﹣∠CEG=180°﹣130°=50°.
故答案为:50°.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
三、解答题
1、
(1)∠BOC=60°
(2)见解析
【分析】
(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
【详解】
(1)∵∠AOB=∠BOC+∠AOC=180°,
又∠BOC:∠AOC=1:2,
∴∠AOC=2∠BOC,
∴∠BOC+2∠BOC=180°,
∴∠BOC=60°;
(2)∵OD平分∠BOC,
∴∠BOD=∠DOC,
∵∠DOC+∠COE=90°,∠AOB是平角,
∴∠AOE+∠BOD=90°,
∴∠AOE=∠COE
即OE平分∠AOC.
【点睛】
本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
2、∠AOD=110°,∠AOB=20°
【分析】
根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.
【详解】
解:∵OB⊥OD
∴∠BOD=90°
∵∠BOC=35°,
∴∠COD=90°-∠BOC=55°
∵OC平分∠AOD,
∴∠AOD=2∠COD=110°
∴∠AOB=∠AOD-∠BOD=110°-90°=20°.
【点睛】
此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.
3、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
4、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
5、(1)③;(2)见解析
【分析】
(1)点与直线的位置关系,直线的定义,两条直线的位置关系,逐项判断即可求解;
(2)根据点与直线的位置关系,两条直线的位置关系,画出图形,即可求解.
【详解】
解:(1)①直线EF经过点C,故本说法正确;
②点A在直线l外,故本说法正确;
③因为直线向两端无限延伸,所以长度无法测量,故本说法错误;
④两条线段m和n相交于点P,故本说法正确;
所以错误的语句为③;
(2)图形如图所示:
【点睛】
本题主要考查了点与直线的位置关系,直线的定义,两条直线的位置关系,熟练掌握相关知识点是解题的关键.
6、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
【分析】
同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
【详解】
解:直线AB,EF被直线CD所截,
(1)∠1与∠2是一对同位角;
(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
【点睛】
本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
7、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
8、(1)40°;(2)见解析;(3)70°
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
9、(1)60,75;(2)秒;(3)3或12或21或30
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
10、(1)见解析;(2)∠B=38°.
【分析】
(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
【详解】
(1)∵AB∥DG,
∴∠BAD=∠1,
∵∠1+∠2=180°,
∴∠BAD+∠2=180°.
∵AD∥EF .
(2)∵∠1+∠2=180°且∠2=142°,
∴∠1=38°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=38°,
∵AB∥DG,
∴∠B=∠CDG=38°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共31页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共29页。试卷主要包含了直线等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)