搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试题(名师精选)

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试题(名师精选)第1页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试题(名师精选)第2页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试题(名师精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共30页。试卷主要包含了下列说法中正确的有,下列说法等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    2、如图,下列选项中,不能得出直线的是( )

    A.∠1=∠2 B.∠4=∠5 C.∠2+∠4=180° D.∠1=∠3
    3、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )

    A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
    4、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    5、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )

    A.30° B.40° C.50° D.60°
    6、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为(  )

    A.140° B.100° C.80° D.40°
    7、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个 B.1个 C.2个 D.3个
    8、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )

    A.4个 B.3个 C.2个 D.1个
    9、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    10、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是(  )

    A.38° B.42° C.48° D.52°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
    证明:∵(已知),
    ∴(垂直的定义).
    ∴________,
    ∵(已知),
    ∴________(依据1:________),
    ∴(依据2:________).

    2、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.

    3、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.

    4、规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.
    5、填写推理理由
    如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.

    证明:∵EF∥AD
    ∴∠2=________(______________)
    又∵∠1=∠2
    ∴∠1=∠3________
    ∴AB∥________(____________)
    ∴∠BAC+________=180°(___________)
    又∵∠BAC=70°
    ∴∠AGD=________
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
    阅读下面的解答过程,并填括号里的空白(理由或数学式).
    解:∵AB∥DC(    ),
    ∴∠B+∠DCB=180°(    ).
    ∵∠B=(    )(已知),
    ∴∠DCB=180°﹣∠B=180°﹣50°=130°.
    ∵AC⊥BC(已知),
    ∴∠ACB=(    )(垂直的定义).
    ∴∠2=(    ).
    ∵AB∥DC(已知),
    ∴∠1=(    )(    ).
    ∵AC平分∠DAB(已知),
    ∴∠DAB=2∠1=(    )(角平分线的定义).
    ∵AB∥DC(己知),
    ∴(    )+∠DAB=180°(两条直线平行,同旁内角互补).
    ∴∠D=180°﹣∠DAB=   .

    2、完成下面的证明:
    已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.

    证明:∵AB⊥AC(已知)
    ∴∠   =90°(    )
    ∵∠1=30°,∠B=60°(已知)
    ∴∠1+∠BAC+∠B=   (    )
    即∠   +∠B=180°
    ∴AD∥BC(    )
    3、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.

    4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.

    5、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.

    6、补全下列推理过程:
    如图,,,,试说明.

    解:,(已知),
    (垂直的定义).
    ( ).
    ( ).
    (已知),
    (等量代换).
    ( ).
    7、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    8、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?

    9、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).

    理由:C,(已知)
    ,( )
    .( )
    又,(已知)
    =180°.(等量代换)
    ,( )
    .( )
    ,(已知)


    10、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    2、A
    【分析】
    根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可.
    【详解】
    解:A、∠1=∠2,不能判断直线,故此选项符合题意;
    B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;
    C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;
    D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意.
    故选:A.
    【点睛】
    此题主要考查了平行线的判定,关键是掌握平行线的判定定理.
    3、D
    【分析】
    根据平行线的判定与性质、对顶角相等逐项判断即可.
    【详解】
    解:∵∠1=∠2,
    ∴AB∥CD,故A正确,不符合题意;
    ∴∠4=∠5,故C正确,不符合题意;
    ∵∠EFB与∠3是对顶角,
    ∴∠EFB=∠3,故B正确,
    无法判断∠3=∠5,故D错误,符合题意,
    故选:D.
    【点睛】
    本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
    4、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    5、B
    【分析】
    由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
    【详解】
    解:如图所示:

    ∵∠1=50°,∠ACB=90°,
    ∴∠BCD=180°﹣∠1﹣∠BCD=40°,
    ∵a∥b,
    ∴∠2=∠BCD=40°.
    故选:B.
    【点睛】
    本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
    6、B
    【分析】
    根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
    【详解】
    解:∵∠AOE+∠BOE=180°,
    ∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
    又∵OE平分∠AOC,
    ∴∠AOE=∠COE=40°,
    ∴∠BOC=∠BOE﹣∠COE
    =140°﹣40°
    =100°,
    故选:B.
    【点睛】
    本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
    7、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;

    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;

    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    8、B
    【分析】
    由邻补角,角平分线的定义,余角的性质进行依次判断即可.
    【详解】
    解:∵∠AOE=90°,∠DOF=90°,
    ∴∠BOE=90°=∠AOE=∠DOF,
    ∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
    ∴∠EOF=∠BOD,∠AOF=∠DOE,
    ∴当∠AOF=50°时,∠DOE=50°;
    故①正确;
    ∵OB平分∠DOG,
    ∴∠BOD=∠BOG,
    ∴∠BOD=∠BOG=∠EOF=∠AOC,
    故④正确;
    ∵,
    ∴∠BOD=180°-150°=30°,

    故③正确;
    若为的平分线,则∠DOE=∠DOG,
    ∴∠BOG+∠BOD=90°-∠EOE,
    ∴∠EOF=30°,而无法确定,
    ∴无法说明②的正确性;
    故选:B.
    【点睛】
    本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
    9、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    10、A
    【分析】
    利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
    【详解】
    解:∵AB⊥AC,∠1=52°,
    ∴∠B=90°﹣∠1
    =90°﹣52°
    =38°
    ∵a∥b,
    ∴∠2=∠B=38°.
    故选:A.
    【点睛】
    本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
    二、填空题
    1、 同角的余角相等 内错角相等,两直线平行
    【分析】
    根据垂直的定义及平行线的判定定理即可填空.
    【详解】
    ∵(已知),
    ∴(垂直的定义).
    ∴,
    ∵(已知),
    ∴(同角的余角相等),
    ∴(内错角相等,两直线平行).
    故答案为:;;同角的余角相等;内错角相等,两直线平行.
    【点睛】
    此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
    2、40°
    【分析】
    利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
    【详解】
    解:∵DE∥BC,
    ∴∠ADE=∠B=70°,
    由折叠的性质可得∠ADE=∠EDF=70°,
    ∴∠BDF=180°﹣∠ADE-∠EDF=40°,
    故答案为:40°.
    【点睛】
    本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
    3、18°度
    【分析】
    根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
    【详解】
    解:∵∠COE是直角,
    ∴∠COE=90°,
    ∵∠COF=36°,
    ∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
    ∵OF平分∠AOE,
    ∴∠AOF=∠EOF=54°,
    ∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
    ∴∠BOD=∠AOC=18°.
    故答案为:18°.
    【点睛】
    本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
    4、a1∥a100;
    【分析】
    从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1∥a4,a1∥a5;a1⊥a2,a1 ⊥a3;且a1与an的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1∥a100.
    【详解】
    解:在同一平面内有直线两直线的位置,
    关系是相交或平行,如图所示:

    ∵a1⊥a2,a2∥a3,
    ∴a1 ⊥a3,
    又∵a3⊥a4,
    ∴a1∥a4,
    又∵a4∥as,
    ∴a1∥a5,
    又∵a5⊥a6,
    ∴a1⊥a6,
    又∵a6∥a7,
    ∴a1⊥a7,

    从以上的规律可知:a1与an的位置关系是4为周期进行循环,
    若下角标的余数为0或1时与a1平行;若下角标的余数为2或3时与a1垂直.
    ∵100=4×25,
    ∴a1∥a100,
    故答案为:a1∥a100.
    【点睛】
    本题综合考查了平行线的性质,同一平面内图形的变化规律,倍数和余数的运用等相关知识点,重点是掌握平行线的性质,难点是掌握由特殊到一般图形变化规律在几何中的运用.
    5、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
    【分析】
    根据平行线的判定与性质,求解即可.
    【详解】
    ∵EF∥AD,
    ∴∠2=∠3,(两直线平行,同位角相等)
    又∵∠1=∠2,
    ∴∠1=∠3,(等量代换)
    ∴AB∥DG.(内错角相等,两直线平行)
    ∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
    又∵∠BAC=70°,
    ∴∠AGD=110°.
    故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
    【点睛】
    此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
    三、解答题
    1、见解析.
    【分析】
    先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
    【详解】
    解:∵(已知),
    ∴(两直线平行,同旁内角互补).
    ∵(已知),
    ∴.
    ∵(已知),
    ∴(垂直的定义).
    ∴.
    ∵(已知),
    ∴(两直线平行,内错角相等).
    ∵平分(已知),
    ∴(角平分线的定义).
    ∵(己知),
    ∴(两条直线平行,同旁内角互补).
    ∴.
    【点睛】
    本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
    2、见解析
    【分析】
    先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.
    【详解】
    证明:∵(已知),
    ∴(垂直的定义),
    ∵,(已知),
    ∴(等量关系),
    即,
    ∴(同旁内角互补,两直线平行).
    【点睛】
    本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.
    3、见解析
    【分析】
    由AB∥CD∥EF可得,,,即可证明.
    【详解】
    证明:∵AB∥CD(已知)
    ∴(两直线平行,内错角相等)
    又 ∵CD∥EF(已知)
    ∴(两直线平行,内错角相等)
    ∵(已知)
    ∴(等式性质)

    【点睛】
    本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
    4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
    【分析】
    由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
    【详解】
    解:因为∠BOC+∠AOC=180º(平角定义),
    所以∠AOC是∠BOC的补角,
    ∠AOD=∠BOC(已知),
    所以∠BOC+∠BOD=180º.
    所以∠BOD是∠BOC的补角.
    所以∠BOC的补角有两个:∠BOD和∠AOC.
    因为∠AOC和∠BOC相邻,
    所以∠BOC的邻补角为:∠AOC.
    ∠BOC没有对顶角.
    【点睛】
    本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
    5、61.5°
    【分析】
    由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.
    【详解】
    解:∵OP平分∠AOC,∠AOC=38°,
    ∴∠AOP=∠COP=∠AOC=×38°=19°,
    ∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,
    ∵ON平分∠POB
    ∴∠PON=∠BOP=×161°=80.5°,
    ∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.
    【点睛】
    本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
    6、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行
    【分析】
    根据题意读懂推理过程中每一步的推理依据即可完成解答.
    【详解】
    ,(已知),
    (垂直的定义),
    (同位角相等,两直线平行),
    (两直线平行,同位角相等),
    (已知),
    (等量代换),
    (内错角相等,两直线平行).
    故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.
    【点睛】
    本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.
    7、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    8、作图见解析
    【分析】
    根据垂线段最短作图即可;
    【详解】
    解:如图,过点M作MN⊥,垂足为N,欲使通道最短,应沿线路MN施工.

    【点睛】
    本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.
    9、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
    【分析】
    结合图形,根据平行线的判定和性质逐一进行填空即可.
    【详解】
    解:,已知
    ,同位角相等,两直线平行
    两直线平行,内错角相等

    又,(已知)
    (等量代换)
    ,同旁内角互补,两直线平行)
    (两直线平行,同位角相等)
    ,(已知)



    【点睛】
    本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    10、∠AOD=110°,∠AOB=20°
    【分析】
    根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.
    【详解】
    解:∵OB⊥OD
    ∴∠BOD=90°
    ∵∠BOC=35°,
    ∴∠COD=90°-∠BOC=55°
    ∵OC平分∠AOD,
    ∴∠AOD=2∠COD=110°
    ∴∠AOB=∠AOD-∠BOD=110°-90°=20°.
    【点睛】
    此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共27页。试卷主要包含了如图,直线b,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试一课一练:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试一课一练,共34页。试卷主要包含了如图,在,直线等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map