搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(无超纲)

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(无超纲)第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(无超纲)第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试巩固练习

    展开

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试巩固练习,共28页。试卷主要包含了如图,在,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,能判定AB∥CD的条件是( )
    A.∠2=∠BB.∠3=∠AC.∠1=∠AD.∠A=∠2
    2、如图,下列条件中,不能判断∥的是( )
    A.∠1=∠3B.∠2=∠4C.∠4+∠5=180°D.∠3=∠4
    3、如图,下列给定的条件中,不能判定的是( )
    A.B.C.D.
    4、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )
    A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°
    5、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )
    A.千米B.千米C.千米D.千米
    6、如图,已知直线,相交于O,平分,,则的度数是( )
    A.B.C.D.
    7、如图,,交于点,,,则的度数是( )
    A.34°B.66°C.56°D.46°
    8、如果同一平面内有三条直线,那么它们交点个数是( )个.
    A.3个B.1或3个C.1或2或3个D.0或1或2或3个
    9、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
    A.第一次向左拐30°,第二次向右拐30°.
    B.第一次向右拐50°,第二次向左拐130°.
    C.第一次向左拐50°,第二次向左拐130°.
    D.第一次向左拐50°,第二次向右拐130°.
    10、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
    A.25°B.27°C.29°D.45°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
    2、如图,口渴的马儿在点处想尽快地到达小河边喝水,它应该沿着线路奔跑,依据是___________.
    3、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
    证明:∵(已知),
    ∴(垂直的定义).
    ∴________,
    ∵(已知),
    ∴________(依据1:________),
    ∴(依据2:________).
    4、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.
    5、如图,已知ABCD,,,则____.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A= ( ).
    ∴AB∥ ( ).
    又∵∠1=∠2(已知),
    ∴AB∥CD ( ).
    ∴EF∥ ( ).
    ∴∠FDG=∠EFD ( ).
    2、如图,直线交于点,于点,且的度数是的4倍.
    (1)求的度数;
    (2)求的度数.
    3、如图,已知,平分,平分,求证.
    证明:∵平分(已知),
    ∴ ( ),
    同理 ,
    ∴ ,
    又∵(已知)
    ∴ ( ),
    ∴.
    4、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
    5、如图,平面上有三个点A、B、C.
    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.
    6、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
    7、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
    (1)求∠DOE的度数;
    (2)若∠EOF是直角,求∠COF的度数.
    8、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.
    9、补全下列推理过程:
    如图,,,,试说明.
    解:,(已知),
    (垂直的定义).
    ( ).
    ( ).
    (已知),
    (等量代换).
    ( ).
    10、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
    解:∵,
    ∴( )
    ∵平分,平分.
    ∴, ( )

    ∴( )

    ∴( )
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据平行线的判定定理,找出正确选项即可.
    【详解】
    根据内错角相等,两直线平行,
    ∵∠A=∠2,
    ∴AB∥CD,
    故选:D.
    【点睛】
    本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
    2、D
    【分析】
    根据平行线的判定定理对各选项进行逐一判断即可.
    【详解】
    解:、,内错角相等,
    ,故本选项错误,不符合题意;
    、,同位角相等,
    ,故本选项错误,不符合题意;
    、,同旁内角互补,
    ,故本选项错误,不符合题意;
    、,它们不是内错角或同位角,
    与的关系无法判定,故本选项正确,符合题意.
    故选:D.
    【点睛】
    本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
    3、A
    【分析】
    根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
    【详解】
    解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
    B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
    C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
    D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
    故选A.
    【点睛】
    本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
    4、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.
    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    5、B
    【分析】
    根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
    【详解】
    解:根据两直线平行,内错角相等,可得∠ABG=48°,
    ∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
    ∴AB⊥BC,
    ∴A地到公路BC的距离是AB=8千米,
    故选B.
    【点睛】
    此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
    6、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    7、C
    【分析】
    由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴,
    故选:C
    【点睛】
    本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
    8、D
    【分析】
    根据三条直线是否有平行线分类讨论即可.
    【详解】
    解:当三条直线平行时,交点个数为0;
    当三条直线相交于1点时,交点个数为1;
    当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
    当三条直线互相不平行时,且交点不重合时,交点个数为3;
    所以,它们的交点个数有4种情形.
    故选:D.
    【点睛】
    本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
    9、A
    【分析】
    根据题意分析判断即可;
    【详解】
    由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
    第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
    第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
    第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
    综上所述,符合条件的是A.
    故选:A.
    【点睛】
    本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
    10、B
    【分析】
    根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
    【详解】
    解:∵AD∥BC,
    ∴∠ABC=∠DAB=54°,∠EBC=∠E,
    ∵BE平分∠ABC,
    ∴∠EBC=∠ABC=27°,
    ∴∠E=27°.
    故选:B.
    【点睛】
    本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
    二、填空题
    1、130°或50°
    【分析】
    根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
    【详解】
    ①如图,



    ②如图,


    综上所述,或
    故答案为:130°或50°
    【点睛】
    本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
    2、垂线段最短
    【分析】
    根据点到直线,垂线段最短,即可求解.
    【详解】
    解:因为 垂直于小河边所在直线,
    所以它应该沿着线路奔跑,依据是垂线段最短.
    故答案为:垂线段最短.
    【点睛】
    本题主要考查了点与直线的关系,熟练掌握点到直线,垂线段最短是解题的关键.
    3、 同角的余角相等 内错角相等,两直线平行
    【分析】
    根据垂直的定义及平行线的判定定理即可填空.
    【详解】
    ∵(已知),
    ∴(垂直的定义).
    ∴,
    ∵(已知),
    ∴(同角的余角相等),
    ∴(内错角相等,两直线平行).
    故答案为:;;同角的余角相等;内错角相等,两直线平行.
    【点睛】
    此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
    4、40°
    【分析】
    利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
    【详解】
    解:∵DE∥BC,
    ∴∠ADE=∠B=70°,
    由折叠的性质可得∠ADE=∠EDF=70°,
    ∴∠BDF=180°﹣∠ADE-∠EDF=40°,
    故答案为:40°.
    【点睛】
    本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
    5、95°
    【分析】
    过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
    【详解】
    解:如图,过点E作EF∥AB,
    ∵EF//AB,
    ∴∠BEF+∠ABE=180°,
    ∵∠ABE=120°,
    ∴∠BEF=180°-∠ABE=180°-120°=60°,
    ∵EF//AB,AB//CD,
    ∴EF//CD,
    ∴∠FEC=∠DCE,
    ∵∠DCE=35°,
    ∴∠FEC=35°,
    ∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
    故答案为:95°
    【点睛】
    本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
    三、解答题
    1、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    2、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°
    【分析】
    (1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;
    (2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.
    【详解】
    解:(1)∵的度数是的4倍,
    ∴∠BOD=4∠AOD,
    又∵∠AOD+∠BOD=180°,
    ∴5∠AOD=180°,
    ∴∠AOD=36°,
    ∴∠BOD=144°;
    (2)∵OE⊥CD,
    ∴∠DOE=90°,
    ∴∠BOE=∠BOD-∠DOE=54°.
    【点睛】
    本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.
    3、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
    【分析】
    由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
    【详解】
    证明:∵BE平分∠ABC(已知),
    ∴∠2=∠ABC(角平分线的定义),
    同理∠1=∠BCD,
    ∴∠1+∠2=(∠ABC+∠BCD),
    又∵AB∥CD(已知)
    ∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
    ∴∠1+∠2=90°.
    故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
    4、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
    【分析】
    三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
    【详解】
    (1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
    (2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
    (3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
    以第一个命题为例证明如下:
    ∵AB∥DE,
    ∴∠B=∠DOC.
    ∵BC∥EF,
    ∴∠DOC=∠E,
    ∴∠B=∠E.
    【点睛】
    本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
    5、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;
    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
    6、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
    7、(1);(2)
    【分析】
    (1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
    (2)先求解 再利用平角的定义可得答案.
    【详解】
    解:(1) ∠AOC:∠AOD=3:7,


    OE平分∠BOD,

    (2)

    【点睛】
    本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    8、∠C的度数为120°
    【分析】
    首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.
    【详解】
    解:∵∠CDE=150°,
    ∴∠CDB=180°-∠CDE=30°,
    又∵ABCD,
    ∴∠ABD=∠CDB=30°,
    ∵BE平分∠ABC,
    ∴∠ABC=2∠ABD=60°,
    ∵ABCD,
    ∴∠C=180°-∠ABC=120°.
    【点睛】
    本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.
    9、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行
    【分析】
    根据题意读懂推理过程中每一步的推理依据即可完成解答.
    【详解】
    ,(已知),
    (垂直的定义),
    (同位角相等,两直线平行),
    (两直线平行,同位角相等),
    (已知),
    (等量代换),
    (内错角相等,两直线平行).
    故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.
    【点睛】
    本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.
    10、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【分析】
    利用平行线的性质定理和判定定理解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠AME=∠CNE.(两直线平行,同位角相等),
    ∵MP平分∠AME,NQ平分∠CNE,
    ∴∠1=∠AME,=∠CNE.( 角平分线的定义),
    ∵∠AME=∠CNE,
    ∴∠1=∠2.(等量代换),
    ∵∠1=∠2,
    ∴MP∥NQ.(同位角相等,两直线平行).
    故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【点睛】
    此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共29页。试卷主要包含了如图所示,直线l1∥l2,点A,如图木条a等内容,欢迎下载使用。

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试综合训练题:

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试综合训练题,共26页。试卷主要包含了下列说法中正确的是,直线m外一点P它到直线的上点A,如图,下列四个结论等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业,共30页。试卷主要包含了如图,下列条件中能判断直线的是,下列语句中等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map