搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版七年级数学第二学期第十四章三角形专项攻克试题(含解析)

    2022年精品解析沪教版七年级数学第二学期第十四章三角形专项攻克试题(含解析)第1页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形专项攻克试题(含解析)第2页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形专项攻克试题(含解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共33页。试卷主要包含了定理,下列命题是真命题的是,已知等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )
    A.B.C.D.
    2、在△ABC中,∠A=∠B=∠C,则∠C=( )
    A.70°B.80°C.100°D.120°
    3、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
    A.2B.3C.4D.7
    4、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
    A.7B.8C.10D.12
    5、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
    下列说法正确的是( )
    A.证法1用特殊到一般法证明了该定理
    B.证法1只要测量够100个三角形进行验证,就能证明该定理
    C.证法2还需证明其他形状的三角形,该定理的证明才完整
    D.证法2用严谨的推理证明了该定理
    6、下列命题是真命题的是( )
    A.等腰三角形的角平分线、中线、高线互相重合
    B.一个三角形被截成两个三角形,每个三角形的内角和是90度
    C.有两个角是60°的三角形是等边三角形
    D.在ABC中,,则ABC为直角三角形
    7、下列长度的三条线段能组成三角形的是( )
    A.3 4 8B.4 4 10C.5 6 10D.5 6 11
    8、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cmB.6cmC.10cmD.12cm
    9、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是( )
    A.95°B.90°C.85°D.80°
    10、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )
    A.∠B=∠CB.AD=AEC.BE=CDD.∠AEB=∠ADC
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、中,比大10°,,则______.
    2、如图所示,将一个顶角∠B=30°的等腰三角形ABC绕点A顺时针旋转α(0°<α<180°),得到等腰三角形AB'C',使得点B',A,C在同一条直线上,则旋转角α=_____度.
    3、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
    4、如图,,为上的定点,、分别为、上两个动点,当的值最小时,的度数为______.
    5、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,四边形的对角线、相交于点,已知,.求证:
    (1);
    (2).
    2、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).
    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .
    3、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
    4、如图,点A,B,C,D在一条直线上,,,.
    (1)求证:.
    (2)若,,求∠F的度数.
    5、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.
    6、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.
    7、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.
    8、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
    (1)依题意补全图形,并直接写出∠AEB的度数;
    (2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
    分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
    ②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
    请根据上述分析过程,完成解答过程.
    9、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
    10、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
    (1)求证:;
    (2)若,求BE的长.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形
    【详解】
    根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,
    根据两个三角形对应的两角及其夹边相等,两个三角形全等,即
    故选C
    【点睛】
    本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.
    2、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    3、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,
    点B、E、C、F在同一直线上,BC=7,EC=4,
    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    4、C
    【分析】
    作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
    【详解】
    解:如图,
    是等边三角形,

    ∵D为AC中点,
    ∴,,,

    作点关于的对称点,连接交于,连接,此时的值最小.最小值,
    ,,




    是等边三角形,

    的最小值为.
    故选:C.
    【点睛】
    本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    5、D
    【分析】
    利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
    【详解】
    解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
    证法2才是用严谨的推理证明了该定理,
    故A不符合题意,C不符合题意,D符合题意,
    证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
    故选D
    【点睛】
    本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
    6、C
    【分析】
    分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
    【详解】
    A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
    B.三角形的内角和为180°,故此选项错误;
    C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
    D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
    7、C
    【分析】
    根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
    【详解】
    解:A.∵3+4<8,
    ∴不能组成三角形,故本选项不符合题意;
    B.∵4+4<10,
    ∴不能组成三角形,故本选项不符合题意;
    C.∵5+6>10,
    ∴能组成三角形,故本选项符合题意;
    D.∵5+6=11,
    ∴不能组成三角形,故本选项不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
    8、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    9、C
    【分析】
    根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
    【详解】
    解:在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS),
    ∴∠C=∠B,
    ∵∠B=25°,
    ∴∠C=25°,
    ∵∠A=60°,
    ∴∠BDC=∠A+∠C=85°,
    故选C.
    【点睛】
    本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    10、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    二、填空题
    1、70°
    【分析】
    根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.
    【详解】
    解:∵,
    ∴,
    ∵比大,
    ∴,
    ∴,
    解得:,
    故答案为:.
    【点睛】
    题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.
    2、105
    【分析】
    利用等腰三角形的性质求出∠BAC,可得结论.
    【详解】
    解:∵BC=BA,∠B=30°,
    ∴∠C=∠BAC=(180°﹣30°)=75°,
    ∴旋转角α=180°﹣∠BAC=105°,
    故答案为:105.
    【点睛】
    本题考查了等腰三角形性质以及旋转的角度问题,解题的关键是理解旋转角就是对应线段的夹角.
    3、②
    【分析】
    根据两边及其夹角对应相等的两个三角形全等,即可求解.
    【详解】
    解:①若选,是边边角,不能得到形状和大小都确定的;
    ②若选,是边角边,能得到形状和大小都确定的;
    ③若选,是边边角,不能得到形状和大小都确定的;
    所以乙同学可以选择的条件有②.
    故答案为:②
    【点睛】
    本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
    4、6°
    【分析】
    作点关于直线的对称点,连接,交于点,过点作,交于点,根据,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,进而根据直角三角形的两锐角互余,以及角度的和差关系求得即可
    【详解】
    解:如图,作点关于直线的对称点,连接,交于点,过点作,交于点,

    ,且当时最小,
    所以当的值最小时,当点与点重合,点与点重合时,此时等于,

    ,
    根据对称性可得
    当的值最小时,的度数为
    故答案为:
    【点睛】
    本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.
    5、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
    【分析】
    按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
    【详解】
    解:步骤是①连接,作;
    ②以点为圆心、长为半径画弧,交于点;
    ③连接交于点;
    ④以点为圆心、长为半径画弧,交于点;
    如图,点即为所求.
    故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.
    【点睛】
    本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
    2、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】
    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;
    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
    3、见解析
    【分析】
    根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
    【详解】
    证明:在△AEC与△ADB中,

    ∴△AEC≌△ADB(SAS),
    ∴∠ACE=∠ABD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠OBC=∠OCB,
    ∴OB=OC.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
    4、(1)见解析;(2)
    【分析】
    (1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
    (2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
    【详解】
    (1)证明:


    又,
    (2)解:,,
    【点睛】
    本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    5、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为
    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    6、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:
    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .
    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;
    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;
    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    7、见解析
    【分析】
    根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
    【详解】
    解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
    ∴∠BAD=∠CAD,
    ∵DE∥AB,
    ∴∠ADE=∠BAD,
    ∴∠ADE=∠CAD,
    ∴AE=ED,
    ∴△AED是等腰三角形.
    【点睛】
    本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.
    8、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
    【分析】
    (1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
    (2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
    【详解】
    解:(1)依题意补全图形,如图所示:连接AD,
    ∵△ABC是等边三角形,
    ∴∠BAC=60°,AB=AC,
    ∵,
    ∴,
    ∵B、D关于AP对称,
    ∴,AD=AB=AC,∠AEC=∠AEB,
    ∴,
    ∴,
    ∴,

    ∴∠AEB=60°.
    (2)AE=BE+CE.
    证明:如图,在AE上截取EG=BE,连接BG.
    ∵∠AEB=60°,
    ∴△BGE是等边三角形,
    ∴BG=BE=EG,∠GBE=60°.
    ∵△ABC是等边三角形,
    ∴AB=BC,∠ABC=60°,
    ∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
    ∴∠ABG=∠CBE.
    在△ABG和△CBE中,
    ∴△ABG≌△CBE(SAS),
    ∴AG=CE,
    ∴AE=EG+AG=BE+CE.
    【点睛】
    本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
    9、见解析
    【分析】
    先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
    【详解】
    证明:∵BF= CE,
    ∴BC= EF.
    在△ABC和△DEF中,
    ∴△ABC≌△DEF(SAS).
    ∴AC=DF.
    【点睛】
    本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
    10、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    证法1:如图,
    ∵∠A=70°,∠B=63°,
    且∠ACD=133°(量角器测量所得)
    又∵133°=70°+63°(计算所得)
    ∴∠ACD=∠A+∠B(等量代换).
    证法2:如图,
    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),
    又∵∠ACD+∠ACB=180°(平角定义),
    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
    ∴∠ACD=∠A+∠B(等式性质).

    相关试卷

    数学七年级下册第十四章 三角形综合与测试习题:

    这是一份数学七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共34页。试卷主要包含了定理等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共37页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map