搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题第1页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题第2页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十三章 相交线 平行线综合与测试测试题

    展开

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试测试题,共32页。试卷主要包含了下列说法中正确的是,如图,已知,,平分,则等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )

    A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
    2、如图,,交于点,,,则的度数是( )

    A.34° B.66° C.56° D.46°
    3、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为(  )
    A.30° B.60° C.30°或60° D.60°或120°
    4、下列说法中正确的是(  )
    A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
    C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
    5、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )

    A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°
    6、如图,已知,,平分,则( )

    A.32° B.60° C.58° D.64°
    7、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,,则( )

    A.20° B.40° C.70° D.110°
    8、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    9、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )
    A.相等 B.互补 C.相等或互补 D.不能确定
    10、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )

    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.

    2、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.

    3、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______

    4、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.

    5、如图所示,过点P画直线a的平行线b的作法的依据是___________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
    (1)请判断AB与CD的位置关系并说明理由;
    (2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
    (3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.

    2、阅读下面的推理过程,将空白部分补充完整.
    已知:如图,在△ABC中,FGCD,∠1 = ∠3.

    求证:∠B + ∠BDE= 180°.
    解:因为FGCD(已知),
    所以∠1= .
    又因为∠1 = ∠3 (已知),
    所以∠2 = (等量代换).
    所以BC ( ),
    所以∠B + ∠BDE = 180°(___________________).
    3、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
    (1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
    (2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.

    4、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?

    5、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣ (邻补角定义)
    =180°﹣ °
    = °
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF( )
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC( )
    =180°﹣90°﹣ °
    = °

    6、如图,,P为,之间的一点,已知,,求∠1的度数.

    7、如图所示,点、分别在、上,、均与相交,,,求证:.

    8、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
    (基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
    证明:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(    )
    ∵MN∥AB,
    ∴∠A=(    )(    )
    ∵MN∥CD,
    ∴∠D=    (    )
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    (类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
    (应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.

    9、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
    将下列证明过程补充完整:

    证明:∵CE平分(已知),
    ∴__________(角平分线的定义),
    ∵(已知),
    ∴___________(等量代换),
    ∴(______________).
    (探究)已知:如图②,点E在AB上,且CE平分,.求证:.

    (应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.

    10、阅读并完成下列推理过程,在括号内填写理由.

    已知:如图,点,分别在线段、上,,平分,平分交于点、.
    求证:.
    证明:平分(已知),
      .
    平分(已知),
      (角平分线的定义),
    (已知),
      .
      .
      .

    -参考答案-
    一、单选题
    1、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    2、C
    【分析】
    由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴,
    故选:C
    【点睛】
    本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
    3、D
    【分析】
    根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
    【详解】
    解:如图1,
    ∵a∥b,
    ∴∠1=∠α,
    ∵c∥d,
    ∴∠β=∠1=∠α=60°;
    如图(2),
    ∵a∥b,
    ∴∠α+∠2=180°,
    ∵c∥d,
    ∴∠2=∠β,
    ∴∠β+∠α=180°,
    ∵∠α=60°,
    ∴∠β=120°.
    综上,∠β=60°或120°.
    故选:D.

    【点睛】
    本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
    4、B
    【分析】
    根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
    【详解】
    解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
    B.两点之间的所有连线中,线段最短,正确;
    C.相等的角不一定是对顶角,故不符合题意;
    D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
    故选:B.
    【点睛】
    本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
    5、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.

    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    6、D
    【分析】
    先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.
    【详解】
    解:∵AD∥BC,∠B=32°,
    ∴∠ADB=∠B=32° .
    ∵DB平分∠ADE,
    ∴∠ADE=2∠ADB=64°,
    ∵AD∥BC,
    ∴∠DEC=∠ADE=64°.
    故选:D.
    【点睛】
    题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.
    7、B
    【分析】
    根据题意可得,,再由折叠的性质得到,即可得解;
    【详解】
    ∵,
    ∴,,
    ∵,
    ∴,,
    由折叠可知:,则;
    故选B.
    【点睛】
    本题主要考查了折叠问题,平行线的性质,准确计算是解题的关键.
    8、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    9、C
    【分析】
    分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.
    【详解】
    解:如图所示:BE⊥AE,BC⊥AC,
    ∴∠BCF=∠AEF=90°,
    ∴∠A+∠AFE=90°,∠B+∠BFC=90°,
    ∴∠A=∠B

    如图所示:BD⊥AD,BC⊥AC,
    ∴∠ADE=∠BCE=90°,
    ∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,
    ∴∠A=∠CBE,
    ∵∠CBE+∠DBC=180°,
    ∴∠A+∠DBC=180°,

    综上所述,∠A与∠B的关系是相等或互补,
    故选C.
    【点睛】
    本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.
    10、B
    【分析】
    根据平行线的判定定理分析即可.
    【详解】
    A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
    B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
    C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
    D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
    故选:B.
    【点睛】
    本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
    二、填空题
    1、30
    【分析】
    先证明再证明再利用平行线的性质与对顶角的性质可得答案.
    【详解】
    解:如图,记交于点
    由题意得:







    故答案为:
    【点睛】
    本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
    2、,
    【分析】
    由,,可得再证明可得
    【详解】
    解: ,,





    故答案为:
    【点睛】
    本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
    3、0<l≤2
    【分析】
    根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
    【详解】
    解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
    ∵直线外一点与直线上各点连线的所有线段中,垂线段最短
    ∴点P到直线a的距离l小于等于2,
    故答案为:0<l≤2.
    【点睛】
    本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
    4、120
    【分析】
    由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
    【详解】
    解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
    ∴∠BOC=120°.
    故答案为:120.
    【点睛】
    本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
    5、内错角相等,两直线平行
    【分析】
    根据平行线的判定方法解决问题即可.
    【详解】
    解:由作图可知,


    (内错角相等两直线平行),
    故答案为:内错角相等,两直线平行.
    【点睛】
    本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
    三、解答题
    1、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
    【分析】
    (1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
    (2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
    (3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
    【详解】
    (1)∵CE平分∠ACD,AE平分∠BAC,
    ∴∠BAC=2∠EAC,∠ACD=2∠ACE,
    ∵∠EAC+∠ACE=90°,
    ∴∠BAC+∠ACD=180°,
    ∴AB∥CD
    (2)∠BAE+∠MCD=90°;理由如下:
    如图,过E作EF∥AB,
    ∵AB∥CD,
    ∴EF∥AB∥CD,
    ∴∠BAE=∠AEF,∠FEC=∠DCE,
    ∵∠AEC=∠AEF+∠FEC=90°,
    ∴∠BAE+∠ECD=90°,
    ∵∠MCE=∠ECD=∠MCD,
    ∴∠BAE+∠MCD=90°.

    (3)如图,过点C作CM//PQ,
    ∴∠PQC=∠MCN,∠QPC=∠PCM,
    ∵AB∥CD,
    ∴∠BAC+∠ACD=180°,
    ∵∠PCQ+∠PCM+∠MCN=180°,
    ∴∠QPC+∠PQC+∠PCQ=180°,
    ∴∠BAC=∠PQC+∠QPC.

    【点睛】
    本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    2、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【分析】
    首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
    【详解】
    解:因为FGCD(已知),
    所以∠1=∠2.
    又因为∠1 = ∠3 (已知),
    所以∠2 =∠3(等量代换).
    所以(内错角相等,两直线平行),
    所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
    故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.
    3、(1)见解析;(2)见解析.
    【分析】
    (1)利用两点之间距离线段最短,进而得出答案;
    (2)利用点到直线的距离垂线段最短,即可得出答案.
    【详解】
    解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,

    (2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
    【点睛】
    本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
    4、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
    【分析】
    根据对顶角和邻补角的定义求解即可.
    【详解】
    解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
    根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
    【点睛】
    此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
    5、角平分线的定义,平角的定义,
    【分析】
    先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
    【详解】
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣(邻补角定义)
    =180°﹣40°
    =140°
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF(角平分线的定义)
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
    =180°﹣90°﹣70°
    =20°
    故答案为:角平分线的定义,平角的定义,
    【点睛】
    本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    6、30°
    【分析】
    首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
    【详解】
    过点P作射线,如图①.
    ∵,,
    ∴.
    ∴.
    ∵,∴.
    又∵.
    ∴.

    【点睛】
    此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
    7、证明见解析
    【分析】
    由,证明,再证,最后根据对顶角相等,可得答案.
    【详解】
    证明:∵,
    ∴,
    ∴∠ABD=∠D,
    又∵,
    ∴∠ABD=∠C,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
    8、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
    【分析】
    基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
    类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
    【详解】
    解:基础问题:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(平行于同一条直线的两条直线平行),
    ∵MN∥AB,
    ∴∠A=∠AGM(两直线平行,内错角相等),
    ∵MN∥CD,
    ∴∠D=∠DGM(两直线平行,内错角相等),
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
    类比探究:如图所示,过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD,
    ∵MN∥AB,
    ∴∠A=∠AGM,
    ∵MN∥CD,
    ∴∠D=∠DGM,
    ∴∠AGD=∠AGM-∠DGM=∠A-∠D.

    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
    又∵AB∥CD,
    ∴MN∥CD,PQ∥CD
    ∵MN∥AB,PQ∥AB,
    ∴∠BAG=∠AGM,∠BAH=∠AHP,
    ∵MN∥CD,PQ∥CD,
    ∴∠CDG=∠DGM,∠CDH=∠DHP,
    ∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
    ∴∠GDH=44°,∠DHP=22°,
    ∴∠CDG=66°,∠AHP=54°,
    ∴∠DGM=66°,∠BAH=54°,
    ∵AH平分∠BAG,
    ∴∠BAG=2∠BAH=108°,
    ∴∠AGM=108°,
    ∴∠AGD=∠AGM-∠DGM=42°.

    【点睛】
    本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
    9、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
    【分析】
    感知:读懂每一步证明过程及证明的依据,即可完成解答;
    探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
    应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
    【详解】
    感知
    ∵CE平分(已知),
    ∴ECD(角平分线的定义),
    ∵(已知),
    ∴ECD(等量代换),
    ∴(内错角相等,两直线平行).
    故答案为:ECD;ECD;内错角相等,两直线平行
    探究
    ∵CE平分,
    ∴,
    ∵,
    ∴,
    ∵.
    应用
    ∵BE平分∠DBC,
    ∴,
    ∵AE∥BC,
    ∴∠CBE=∠E,∠BAE+∠ABC=180゜,
    ∴∠E=∠ABE,
    ∵,
    ∴∠ABC=80゜


    【点睛】
    本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
    10、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
    【分析】
    根据角平分线的定义和平行线的性质与判定即可证明.
    【详解】
    证明:平分(已知),
    (角平分线的定义).
    平分(已知),
    (角平分线的定义),
    (已知),
    (两直线平行,同位角相等).
    (等量代换).
    (同位角相等,两直线平行).
    故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
    【点睛】
    本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共31页。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共29页。试卷主要包含了如图,,交于点,,,则的度数是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。

    数学第十三章 相交线 平行线综合与测试习题:

    这是一份数学第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map