![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节测评练习题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12707456/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节测评练习题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12707456/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节测评练习题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12707456/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共31页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
2、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
3、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
4、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
A.相等 B.互补 C.互余 D.相等或互补
5、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
6、如图,木工用图中的角尺画平行线的依据是( )
A.垂直于同一条直线的两条直线平行
B.平行于同一条直线的两条直线平行
C.同位角相等,两直线平行
D.经过直线外一点,有且只有一条直线与这条直线平行
7、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
8、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )
A.2cm B.小于2cm C.不大于2cm D.4cm
9、如图,直线被所截,下列说法,正确的有( )
①与是同旁内角;
②与是内错角;
③与是同位角;
④与是内错角.
A.①③④ B.③④ C.①②④ D.①②③④
10、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段( )的长度
A.CD B.AD C.BD D.BC
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2________.
∵∠1=∠2,
∴∠DCB=∠1________.
∴GD∥CB________.
∴∠3=∠ACB________.
2、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.
3、在同一平面内的三条直线,它们的交点个数可能是________.
4、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .
5、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.
三、解答题(10小题,每小题5分,共计50分)
1、如果把图看成是直线AB,EF被直线CD所截,那么
(1)∠1与∠2是一对什么角?
(2)∠3与∠4呢?∠2与∠4呢?
2、如图,已知,平分,平分,求证.
证明:∵平分(已知),
∴ ( ),
同理 ,
∴ ,
又∵(已知)
∴ ( ),
∴.
3、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.
4、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
(1)若∠MAB=∠QCB=20°,则B的度数为 度.
(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系
5、如图,①过点Q作QD⊥AB,垂足为点D;
②过点P作PE⊥AB,垂足为点E;
③过点Q作QF⊥AC,垂足为点F;
④连P,Q两点;
⑤P,Q两点间的距离是线段______的长度;
⑥点Q到直线AB的距离是线段______的长度;
⑦点Q到直线AC的距离是线段______的长度;
⑧点P到直线AB的距离是线段______的长度.
6、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
7、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.
(1)用无刻度的直尺作图:
①过点A作ADOC;
②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;
(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.
8、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
9、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
(探究)已知:如图②,点E在AB上,且CE平分,.求证:.
(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
10、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
-参考答案-
一、单选题
1、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
2、B
【分析】
由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
【详解】
解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
故选:B.
【点睛】
本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
3、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
4、D
【分析】
根据平行线的性质,结合图形解答即可.
【详解】
如图,当AE∥BD时,∠EAB与∠DBC符合题意,
∴∠EAB=∠DBC;
如图,当AE∥BD时,∠EAF与∠DBC符合题意,
∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
∴∠DBC +∠EAF=180°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
5、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
6、C
【分析】
由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
【详解】
由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
故选:C
【点睛】
本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
7、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
8、C
【分析】
根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
【详解】
解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,
∴点到直线的距离不大于,
故选:C.
【点睛】
本题考查了垂线段最短的性质,熟记性质是解题的关键.
9、D
【分析】
根据同位角、内错角、同旁内角的定义可直接得到答案.
【详解】
解:①与是同旁内角,说法正确;
②与是内错角,说法正确;
③与是同位角,说法正确;
④与是内错角,说法正确,
故选:D.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
10、A
【分析】
根据和点到直线的距离的定义即可得出答案.
【详解】
解:,
点到的距离是线段的长度,
故选:A.
【点睛】
本题考查了点到直线的距离,理解定义是解题关键.
二、填空题
1、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【分析】
根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
【详解】
证明:
∵,
∴(两直线平行,同位角相等)
∵,
∴.(等量代换)
∴(内错角相等,两直线平行).
∴(两直线平行,同位角相等).
故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
【点睛】
题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
2、> 3 2 垂线段
【分析】
根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
【详解】
解:∵∠AOB=90°,
∴AO⊥BO,AB>BO,
∵OA=3cm,OB=2cm,
∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
故答案为:>,3,2,垂线段.
【点睛】
本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
3、0或1或2或3个
【分析】
分类讨论画出图形,①当三条直线平行时,没有交点;②三条直线交于一点时,有一个交点;③两条平行线与一条直线相交时,有两个交点;④三条直线两两相交时有三个交点吗,即可得出答案.
【详解】
解:如图,
由图可知:同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.
故答案是:0个或1个或2个或3个
【点睛】
本题主要考查了相交线和平行线.正确画出图形,即可得到正确结果.
4、平行
【分析】
过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.
【详解】
解:过点作,
∴,
∵∠BAC+∠ACE+∠CEF=360°,
∴,
∴,
∴,
故答案为:平行.
【点睛】
本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.
5、110︒度
【分析】
根据平行线的性质和角平分线的性质可得结论.
【详解】
解:∵AD//BC
∴
∵CE平分∠DCF
∴
∴
∵AB//CD
∴
∵AD//BC
∴
∴
故答案为:110︒
【点睛】
本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
三、解答题
1、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
【分析】
同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
【详解】
解:直线AB,EF被直线CD所截,
(1)∠1与∠2是一对同位角;
(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
【点睛】
本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
2、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
【分析】
由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
【详解】
证明:∵BE平分∠ABC(已知),
∴∠2=∠ABC(角平分线的定义),
同理∠1=∠BCD,
∴∠1+∠2=(∠ABC+∠BCD),
又∵AB∥CD(已知)
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
∴∠1+∠2=90°.
故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
3、(1)见解析;(2)见解析.
【分析】
(1)利用两点之间距离线段最短,进而得出答案;
(2)利用点到直线的距离垂线段最短,即可得出答案.
【详解】
解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,
(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
【点睛】
本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
4、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
【分析】
(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
【详解】
解:(1)作 ,
∵MN//PQ,
∴,
∴ ,
∴ ;
(2)①如图所示,
②过点F作 ,
∴ ,
∴ ,
∵ ,
∴ ,
∵
∴ ,
∴ ,
∵ ,
∴ ;
(3)延长AE交PQ于点G,
设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
∴∠BCQ=180°−my°,
由(1)知,∠ABC=mx°+180°−my°,
∴y°−x°=,
∵MNPQ,
∴∠MAE=∠DGP=x°,
则∠CDA=∠DCP−∠DGC
=y°−x°
=,
即m∠CDA+∠ABC=180°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
5、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE
【分析】
由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.
【详解】
①②③④作图如图所示;
⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;
⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;
⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;
⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.
【点睛】
本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.
6、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
7、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析
【分析】
(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.
(2)根据角的和差定义证明即可.
【详解】
解:(1)①如图,直线AD即为所求作.
②∠AOE即为所求作.
(2)∠AOC+∠BOE=180°.
理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,
∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.
【点睛】
本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.
8、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
9、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
10、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了如图,直线AB,下列关于画图的语句正确的是.等内容,欢迎下载使用。
这是一份七年级下册第十三章 相交线 平行线综合与测试达标测试,共29页。试卷主要包含了下列说法中正确的个数是,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共27页。