北京课改版八年级下册第十四章 一次函数综合与测试课后练习题
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共21页。试卷主要包含了已知点A,已知一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)2、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定3、关于函数有下列结论,其中正确的是( )A.图象经过点B.若、在图象上,则C.当时,D.图象向上平移1个单位长度得解析式为4、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )A.2 B.-1 C.-2 D.46、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>7、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④8、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)9、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-110、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数(、是常数,)的图像与轴交于点,与轴交于点.若,则的取值范围为______.2、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.3、已知一次函数,且y的值随着x的值增大而减小,则m的取值范围是______.4、某品牌鞋的长度ycm与鞋的“码”数x之间满足一次函数关系.若22码鞋的长度为16cm,44码鞋的长度为27cm,则长度为23cm鞋的码数为 _____.5、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.三、解答题(5小题,每小题10分,共计50分)1、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:水果品种汽车运载量(吨/辆)1086水果获利(元/吨)80012001000 (1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆①求与之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案.(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?2、已知直线和直线相交于点A,且分别与x轴相交于点B和点C.(1)求点A的坐标;(2)求的面积.3、如图所示,在平面直角坐标系中,已知A(0,1),B(3,0),C(3,4).(1)在图中画出△ABC,△ABC的面积是 ;(2)在(1)的条件下,延长线段CA,与x轴交于点M,则M点的坐标是 .(作图后直接写答案)4、高斯记号表示不超过x的最大整数,即若有整数n满足,则.当时,请画出点的纵坐标随横坐标变化的图象,并说明理由.5、已知是x的正比例函数,且当时,y=2.(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4; -参考答案-一、单选题1、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.2、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.【详解】解:∵一次函数y=−2x+1中,k=−2<0,∴y随着x的增大而减小.∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.3、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.【详解】解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.【详解】解:由题意得:x=1时,y=k+3,∵在x=1处,自变量增加2,函数值相应减少4,∴x=3时,函数值是k+3-4,∴3k+3=k+3-4,解得:k=-2,故选C.【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.6、C【解析】【分析】利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.【详解】解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<.故选:C.【点睛】本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.7、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.8、C【解析】【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.9、C【解析】【分析】把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.【详解】解:由题意得:解得:故所求的一次函数关系为故选:C.【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.10、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,∴直线的解析式为,∵将直线向下平移8个单位得到直线,∴直线的解析式为 ,∵点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,∴直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,∴直线与直线的交点坐标为.故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.二、填空题1、【解析】【分析】将已知点、代入后可得,再根据的取值范围可得的取值范围.【详解】解:∵一次函数(、是常数,)的图像与轴交于点,与轴交于点,∴,∴,∵,∴,即.故答案为:.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得和的关系是解题关键.2、【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..3、m<【解析】【分析】利用一次函数的性质可得出关于m的一元一次不等式,解之即可得出m的取值h^$范围.【详解】解:∵一次函数的y值随着x值的增大而减小,∴3m+1<0,∴m<.故答案为:m<.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.4、36【解析】【分析】先设出函数解析式,用待定系数法求出函数解析式,再把y=23代入求出y即可.【详解】解:∵鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系,∴设函数解析式为:y=kx+b(k≠0),由题意知,x=22时,y=16,x=44时,y=27,∴ ,解得: ,∴函数解析式为:y=x+5,当y=23时,23=x+5,解得:x=36,故答案为:36.【点睛】本题考查一次函数的应用,用待定系数法求函数解析式是本题的关键.5、【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组的解是,故答案为:【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.三、解答题1、(1)①y=152x;②有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元.【解析】【分析】(1)①等量关系为:车辆数之和=15,由此可得出x与y的关系式;②由题意,列出不等式组,求出x的取值范围,即可得到答案;(2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定.【详解】解:(1)①设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆.则10x+8y+6(15-x-y)=120,即10x+8y+90-6x-6y=120,则y=15-2x;②根据题意得:,解得:3≤x≤6.则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)w=10×800x+8×1200(15-2x)+6×1000[15-x-(15-2x)]+120×50=5200x+150000,根据一次函数的性质,当x=3时,w有最大值,是5200×3+150000=134400(元).应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆.【点睛】本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.2、(1);(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点的坐标;(2)分别令,即可求得点的坐标,进而求得【详解】解:(1)由题意得 解得, ∴A(1,3). (2)过A作AD⊥x轴于点D.∵y=x+2与x轴交点B(-2,0), y=-x+4与x轴交点C(4,0).∴BC=6. ∵A(1,3),∴AD=3. ∴S△ABC=【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.3、(1)见解析; 6;(2)作图见解析;(-1,0).【解析】【分析】(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;(2)根据题意作图,由图知点M的坐标.【详解】(1)如图,△ABC的面积=,故答案为:6; (2)如图,设经过点A,C的直线为,代入A(0,1),C(3,4)得,令,则点M的坐标(-1,0),故答案为:(-1,0).【点睛】本题考查平面直角坐标系中点的坐标特征、一次函数的图象与坐标轴的交点等知识,是基础考点,掌握相关知识是解题关键.4、见详解【解析】【分析】根据高斯记号[x]表示不超过x的最大整数,确定出点P(x,x+[x])的纵坐标随横坐标变化的分段函数解析式,画出图象即可.【详解】解:∵[x]表示不超过x的最大整数, ∴当时,[x]=1,P(x,x1)当时,[x]=0,P(x,x)图象变化如图:【点睛】本题考查了分段函数的图象及其性质,通过自变量的取值确定函数的解析式是本题的关键.5、(1)y=+1;(2)x=时,y=4.【解析】【分析】(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;(2)根据的值代入(1),即可求得的值【详解】解:(1)是x的正比例函数,当时,y=2解得表达式为:即(2)由,令即解得 x=时,y=4.【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题,共24页。试卷主要包含了已知点A,在平面直角坐标系中,点P,点A个单位长度.,一次函数y=等内容,欢迎下载使用。
这是一份数学第十四章 一次函数综合与测试同步训练题,共26页。试卷主要包含了已知点A,变量,有如下关系,如图,一次函数y=kx+b等内容,欢迎下载使用。