北京课改版八年级下册第十四章 一次函数综合与测试习题
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试习题,共27页。试卷主要包含了在下列说法中,能确定位置的是,点在等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个2、直线y=2x-1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、已知为第四象限内的点,则一次函数的图象大致是( )A. B.C. D.4、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号5、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )A.k1>k2>k3>k4 B.k1>k2>k4>k3C.k2>k1>k3>k4 D.k4>k3>k2>k16、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7、点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)9、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )A.k=0 B.k=1 C.k=2 D.k=310、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图①,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y.若y关于x的函数图象如图②所示,则△BCD的面积是______.2、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.3、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.4、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.5、已知自变量为x的函数y=mx+2-m是正比例函数,则m=_________ .三、解答题(5小题,每小题10分,共计50分)1、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.2、如图所示,在平面直角坐标系中,已知A(0,1),B(3,0),C(3,4).(1)在图中画出△ABC,△ABC的面积是 ;(2)在(1)的条件下,延长线段CA,与x轴交于点M,则M点的坐标是 .(作图后直接写答案)3、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.(1)在图中作出DEF,使得DEE与ABC关于x轴对称;(2)写出D,E两点的坐标:D ,E .(3)求DEF的面积.4、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?5、已知是x的正比例函数,且当时,y=2.(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4; -参考答案-一、单选题1、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.2、B【解析】【分析】根据一次函数的图象特点即可得.【详解】解:一次函数的一次项系数,常数项,直线经过第一、三、四象限,不经过第二象限,故选:B.【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.3、A【解析】【分析】根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.【详解】解:∵为第四象限内的点,∴ ,∴ ,∴一次函数的图象经过第一、二、三象限.故选:A【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.4、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.5、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.6、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.7、C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).8、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.9、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的y随x的增大而减小∴∴∴k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.10、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.二、填空题1、3【解析】【分析】由图2可知,当到P与C重合时最大,△ABP的面积最大,此时可求得BC=2;然后可知当P在CD上移动时面积不变,可知CD=5-2=3,因此可求△BCD的面积.【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.2、【解析】【分析】如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.【详解】解:如图,过作于 轴,则轴, 故答案为:【点睛】本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.3、(-3,4)【解析】【分析】先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.【详解】解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,∴A(0,4),D(-1,0),C(0,-2),∴AC=6;联立 ,解得,∴点B的坐标为(-2,2),∴,∵,∴可设直线AE的解析式为,∴,∴直线AE的解析式为,∵E是直线AE与x轴的交点,∴点E坐标为(2,0),∴DE=3,∴,∴,∴,∴点P的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.4、x>300【解析】【分析】根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.【详解】解:由题设可得不等式kx+30<x.∵y1=kx+30经过点(500,80),∴k=,∴y1=x+30,y2=x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<x中x成立,故答案为:x>300.【点睛】本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.5、2【解析】【分析】根据正比例函数的定义可得答案.【详解】解:∵已知自变量为x的函数y=mx+2-m是正比例函数,∴m≠0,2﹣m=0,∴m=2,故答案为:2.【点睛】解题关键是掌握正比例函数的定义,解题关键是明确正比例函数为y=kx的形式,其中k为常数且k≠0,自变量次数为1.三、解答题1、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.2、(1)见解析; 6;(2)作图见解析;(-1,0).【解析】【分析】(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;(2)根据题意作图,由图知点M的坐标.【详解】(1)如图,△ABC的面积=,故答案为:6; (2)如图,设经过点A,C的直线为,代入A(0,1),C(3,4)得,令,则点M的坐标(-1,0),故答案为:(-1,0).【点睛】本题考查平面直角坐标系中点的坐标特征、一次函数的图象与坐标轴的交点等知识,是基础考点,掌握相关知识是解题关键.3、最大588cm故答案为3,588.(5)根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.【点睛】本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.2.(1)直线的解析式为;(2);(3)或.【解析】【分析】(1)在中,利用勾股定理确定,由对称设,,,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;(2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;(3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,,利用全等三角形的判定及性质可得,,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可.【详解】解:(1),,即,又,,设直线的解析式为,将点代入得,直线的解析式为.在中,,点、点关于直线对称,设,,,,在中,,,,将点B代入直线的解析式为;(2)由(1)得,BC=OB=3,如图所示:∵O点关于直线AB的对称点C点在直线AD上,∴,∴,使,则设点,两个三角形的高均为线段OA长度,使底相同即:,解得:或(舍去),∴;(3)如图,设若直线、与直线夹角等于,即为等腰直角三角形,作于,于,∴,,∵,∴,∵,∴,在与中,,∴,,,直线过,即,解得:,直线的解析式为:,设坐标为,则,,,由线段间的关系可得:点坐标为,点在直线上,,解得:,,,当直线过点时,,解得:;当直线过点时,,解得:;所以或.【点睛】本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键.3.(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【解析】【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得; (2)根据△DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3),∴面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.4、东经度,南纬度可以表示为.【解析】【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.【详解】解:由题意可知东经度,南纬度,可用有序数对表示.故东经度,南纬度表示为.【点睛】本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.5、(1)y=+1;(2)x=时,y=4.【解析】【分析】(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;(2)根据的值代入(1),即可求得的值【详解】解:(1)是x的正比例函数,当时,y=2解得表达式为:即(2)由,令即解得 x=时,y=4.【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共24页。试卷主要包含了下列命题中,真命题是,点在等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试复习练习题,共28页。试卷主要包含了,两地相距80km,甲等内容,欢迎下载使用。